
Mathematical Programming
https://doi.org/10.1007/s10107-023-02029-0

FULL LENGTH PAPER

Series A

A polynomial time algorithm for finding a minimum
4-partition of a submodular function

Tsuyoshi Hirayama1 · Yuhao Liu2 · Kazuhisa Makino3 · Ke Shi2 · Chao Xu2

Received: 21 April 2023 / Accepted: 17 October 2023
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023

Abstract
In this paper, we study the minimum k-partition problem of submodular functions,
i.e., given a finite set V and a submodular function f : 2V → R, computing a k-
partition {V1, . . . , Vk} of V with minimum

∑k
i=1 f (Vi). The problem is a natural

generalization of the minimum k-cut problem in graphs and hypergraphs. It is known
that the problem is NP-hard for general k, and solvable in polynomial time for fixed
k ≤ 3. In this paper, we construct the first polynomial-time algorithm for theminimum
4-partition problem.

Keywords Submodular function · Polynomial time · Combinatorial optimization

Mathematics Subject Classification 90C27

Authors are ordered alphabetically. This work was partially supported by JST ERATO Grant Number
JPMJER2301 and JSPS KAKENHI Grant Numbers JP19K22841, JP20H00609, and JP20H05967. An
earlier version of this paper appeared in SODA 2023 [17]. This version introduces have a more general
algorithm for (1, �)-size 3-partition, and a graph example at the end.

B Chao Xu
the.chao.xu@gmail.com

Tsuyoshi Hirayama
tsuyoshi1.hirayama@toshiba.co.jp

Yuhao Liu
yuhaoliu126@gmail.com

Kazuhisa Makino
makino@kurims.kyoto-u.ac.jp

Ke Shi
self.ke.shi@gmail.com

1 Toshiba Digital Solutions Corporation, Kawasaki, Japan

2 University of Electronic Science and Technology of China, Chengdu, China

3 Kyoto University, Kyoto, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02029-0&domain=pdf
http://orcid.org/0000-0003-4417-3299

T. Hirayama et al.

1 Introduction

Let V be a finite set with n = |V |, and let f : 2V → R be a submodular function,
i.e., f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y) holds for any X ,Y ⊆ V . For an integer
k ≥ 2, the minimum k-partition problem for a submodular function f is to compute a
k-partitionPk = {V1, . . . , Vk} of V with the minimum value defined as

∑k
i=1 f (Vi),

where, for a positive integer k, {V1, . . . , Vk} is called a k-partition if Vi �= ∅ for all i ,⋃k
i=1 Vi = V , and Vi ∩ Vj = ∅ for all i and j with i �= j . This is one of the most

fundamental problems in combinatorial optimization, and a natural generalization of
the minimum k-cut problem in graphs and hypergraphs, where both problems are
polynomial time solvable for fixed k.

The minimum k-cut problem has many applications such as the traveling salesper-
son problem, VLSI design, evolutionary tree construction and network reliability [12,
22]. Goldschmidt-Hochbaum [13] showed that the minimum k-cut problem in graphs
is NP-hard, when k is a part of input, but it can be solved in polynomial time for fixed
k.

After their work, a number of algorithms for the minimum k-cut problem in graphs
were proposed; See [8, 16, 18, 22, 24, 25, 29, 31], for example. The current best
deterministic algorithm has Õ(mnk−1) time for k ≤ 6 [23–25, 33], Õ(mn2k−2) time
for k ≥ 7 [8], kO(k)n(2ω/3+ε)k+O(1) for any ε > 0 and polynomially bounded weights,
where ω is the matrix multiplication constant [16], and a randomized algorithm in
Õ(nk) time [15].

Theminimum k-cut problem in hypergraphs isNP-hard,which immediately follows
from the NP-hardness of the graph problem [13]. Klimmek and Wagner [19] and
Mak and Wong [21] showed that the minimum 2-cut problem in hypergraphs can be
solved in Õ(dn) time, where d denotes the sum of the cardinalities of all hyperedges.
Chekuri and Xu showed that in the same running time, they can count and enumerate
all minimum 2-cuts [9]. For k = 3, Xiao [32] constructed an Õ(d(m + n)n3)-time
algorithm. Fukunaga [11] showed that the problem can be solved in polynomial time if
both k and maxe∈E |e| are fixed. A randomized polynomial time algorithm was found
by Chandrasekaran et al. [6]. Later works speed up the randomized algorithm [10], and
generalize tomulticriteria objective and size constraints [3]. Recently, Chandrasekaran
and Chekuri finally settled the open problem and showed minimum k-cut problem in
hypergraphs is polynomial time solvable for each fixed k [5]. There is some follow-up
work on counting and enumerating all minimum k-cuts [1, 2].

The minimum k-partition problem for fixed k is much less understood. A submod-
ular function is symmetric, if f (X) = f (V \X). For k = 2, the problem is equivalent
to the symmetric submodular function minimization, since f (X) can be replaced with
1
2 (f (X) + f (V − X)). Hence it can be solved in O(n3γ) time by Queyranne’s algo-
rithm [28], where γ denotes the time required for function evaluation. For k = 3,
Okumoto et al. [27] presented an O(n3τ(n))-time algorithm by extending Xiao’s
algorithm for the minimum 3-cut problem for hypergraphs [32], where τ(n) denotes
the time required to solve the submodular function minimization, and the current best
known bound for τ(n) is Õ(n3γ + n4) [20]. However, it is still open if there exists a
polynomial time algorithm for fixed k ≥ 4 [27]. It was implied in [4] that symmetric
submodular k-partition reduces to n2k−2 calls of submodular (k − 1)-partition. There

123

A polynomial time algorithm for finding a minimum 4-partition…

are several studies on approximation algorithms for the problem [7, 27, 34, 35]. The
current best approximation ratio is 1.5 for k = 4 [27] and 2 for k ≥ 5 [7].

A generalization of our problem, the w-size k-partition problem, first described in
[14]. Let w = (w1, . . . , w j), a w-size k-partition is a k-partition V1, . . . , Vk , such
that wi ≤ |Vi | for each i ≤ j , and |Vi | ≤ |Vi+1|. Namely, the i th smallest part of the
partition has at least wi elements. The goal is to find a minimum w-size k-partition.
Since this is a strictly more general problem than submodular k-partition problem,
even fewer results are known.

Our results We show the following two results.

1. An O(n6τ(n)) time algorithm for finding a minimum 4-partition of a submodular
function.

2. As a corollary, an O(n14τ(n)) time algorithm for finding minimum 5-partition of
a symmetric submodular function.

3. The minimum (1, �)-size 3-partition can be found in O(n4�−3τ(n)) time.

This settles the complexity status of the submodular k-partition problem for k = 4
[11, 22, 24, 27, 32, 35]. Our algorithm is based on the compatibility of 3- and 4-
partitions, which is a generalization of the noncrossing property of 2- and 3-partitions
proposed in [14, 27, 32]. There exist two natural and possible extensions of their
noncrossing property. However, both extensions fail to produce a polynomial time
solution to the minimum 4-partition problem (see the detailed discussion in Sect. 3).

The rest of the paper is organized as follows. In Sect. 3, we present the compatibility
of 3- and 4-partitions, where the proof can be found in Sect. 4, and describe our
algorithm. In Sect. 5, we present how to compute a minimum (1, �)-size 3-partition
for fixed �. Section6 analyzes the time complexity of our algorithm. Finally in Sect. 7,
we conclude with some remarks.

2 Preliminaries

We write
(V
i

)
to be the family of all size i subsets of V . We abuse the notation to

generalize each function f on sets to a function on partitions. That is, for any partition
P , we define f (P) = ∑

X∈P f (X). Let g : 2V → R be a set function. For a set
U ⊆ V , let g\U denote a set function obtained from g by deletingU from V , and g/U

denote a set function obtained from g by shrinkingU into a new element u (i.e., u /∈ V).
Namely, g\U : 2V \U → R satisfies g\U (S) = g(S), and g/U : 2(V \U)∪{u} → R

satisfies g/U (S) = g(S) if S �� u, and g((S\{u}) ∪ U), otherwise. We note that g\U
and g/U are both submodular if g is submodular.

A set X is noncrossing with a partition Y , if X ⊂ Y for some Y ∈ Y . A partition
X is noncrossing with a partition Y , if there exists a component X ∈ X that is
noncrossing with Y . A partition is called h-size for an integer h if it is (h)-size,
namely all its components contain at least h elements. A partitionX is called trivial
if all but one component have exactly 1 element. A non-trivial k-partition is equivalent
to s-size partition, where s = (1, . . . , 1, 2) is a k − 1 size tuple. For 2-partitions over
a ground set with at least 4 elements, it is trivial if and only if it is not 2-size.

123

T. Hirayama et al.

Fig. 1 Compute a minimum
3-partition

For two partitions X = {X1, . . . , Xk} and Y = {Y1, . . . ,Ym}, a matrix M is a
configuration ofX and Y , if Mi, j = |Xi ∩Y j |. We will abuse the notation and write
Mi j when it will not lead to confusion. We say configuration M is generated by X
and Y .

Two configurations M1 and M2 are equivalent if there exist a row permutation and
a column permutation to swap M1 into M2. Configurations help us visualize the ways
partitions intersect.

To represent a set of possible configurations M visually, we write a few numbers
in the matrix to indicate what pattern the configuration matches. We use the number
i to denote the values that are known to be i , i+ if the value known to be at least i , i−
if the value known to be at most i , and ? means either we don’t know or we don’t care
about its value.

3 Compatibility for 3- and 4-partitions

In this section,we present the compatibility ofminimum3- and 4-partitions in submod-
ular functions, from which we derive a polynomial time algorithm for the minimum
4-partition problem. We start with the noncrossing property for 2- and 3-partitions,
which was proven in [27].

The following lemma is a direct consequence of Corollary 1 from [27].

Lemma 3.1 Let f : 2V → R be a submodular function with n ≥ 7, and letX denote
a minimum non-trivial 2-partition of f . If f has a minimum 3-partition of 2-size, then
it contains a minimum 3-partition with which X is noncrossing.

By this lemma, we can easily construct the following divide-and-conquer algorithm
for the minimum 3-partition problem [27], see Fig. 1.

Wefirst compute some candidate partitions,where one of them is aminimumnon-2-
size 3-partition of f (i.e., a minimum partition of type {{v},W1,W2} for some v ∈ V).
To do this, we compute a minimum partition {W1,W2} of f\{v} for each v ∈ V . We
next compute a minimum 2-size 2-partition X = {X1, X2} and recursively call the
algorithm for functions f/X1 and f/X2 and obtain two candidate partitions. Finally,
we take the minimum of all candidate partitions. Therefore, the noncrossing property
in Lemma 3.1 produces a polynomial time algorithm for the minimum 3-partition
problem.

123

A polynomial time algorithm for finding a minimum 4-partition…

Let us consider possible generalizations of the noncrossing property. The first one
is a stronger property for 2- and 4-partitions. Let X = {X1, X2} denote a minimum
2-partition of f . There exists a minimum 4-partition Y = {Y1,Y2,Y3,Y4} of f such
that eitherX is noncrossing with Y or X1 = Y1 ∪ Y2 after some renumbering of the
indices. We remark thatX is not necessarily h-size for h ≥ 2, and hence the property
above does not provide a polynomial divide-and-conquer algorithm for the minimum
4-partition problem. IfX is assumed to be h-size for h ≥ 2, then we have additional
cases, one of which also blocks the construction of a polynomial time algorithm (See
the case (iii) in Theorem 6 in [26]).

The second generalization is to directly use noncrossing property for 3- and 4-
partitions. Assume that every minimum h-size 3-partition X = {X1, X2, X3} for
h ≥ 2 is noncrossing with a minimum 4-partition. However, this does not provide a
polynomial divide-and-conquer algorithm for the minimum 4-partition problem. Note
that the algorithm calls itself for f/Xi , i = 1, 2, 3, where in the worst case, two of the
recursive calls have size n−1, this implies that a simple divide-and-conquer algorithm
requires exponential time.

In this paper, we introduce the concept of compatibility to overcome this difficulty.
A partition X is compatible with partition Y , if |X | − 1 components of X are
noncrossing with Y . We write X � Y . Note if X and Y are 2- and 3- partitions,
respectively, then the compatibility relation is identical to the noncrossing property.

Theorem 3.1 Let f be a submodular function on at least 13 vertices. If all minimum
4-partitions are 3-size, then every minimum non-trivial 3-partition is compatible with
some minimum 4-partition.

Compatibility is a very strong property about two partitions, and it is very unlikely
to hold true in general. In fact, there are examples where a minimum 4-partition is not
compatible with any minimum 5-partition, as we will see in Sect. 7.

The proof of Theorem 3.1 can be found in the next section. We remark that the
proof is based on case analysis. Based on Theorem 3.1, it is not difficult to see that
the following simple contraction based algorithm solves the minimum 4-partition
problem.We invite the readers to spot the difference between the minimum 3-partition
algorithm in Fig. 1 and the minimum 4-partition algorithm in Fig. 2.

3.1 The algorithm

Either there is a minimum 4-partition that is not 3-size, so there is a part of size at most
2. We try all possible such parts, and solve the minimum 3-partition problem on the
remaining part. Otherwise, there is a 3-size minimum 4-partition. We find a minimum
non-trivial 3-partition, and we know it is compatible to some minimum 4-partition
by Theorem 3.1. Therefore, we can contract two of the parts. Since we do not know
which, we try all possibilities. Finally, we collect all candidates we computed, and
find the minimum among them. The full algorithm is described in Fig. 2.

We computed O(n2) minimum 3-partitions, and computed a minimum non-trivial
3-partition. The remaining non-recursive operations take constant time per statement.

123

T. Hirayama et al.

Fig. 2 Compute a minimum
4-partition

The minimum 3-partition problem is solvable in polynomial time as we noted in
this section. Thus, except for the proof of Theorem 3.1, what remains to be done is
to provide a polynomial time algorithm to compute a minimum nontrivial 3-partition,
which is discussed in Sect. 5.

4 Proof of Theorem 3.1

Let V be the ground set of some submodular function f . Consider any 3-partition
X = {X1, X2, X3} and Y = {Y1,Y2,Y3,Y4}. A submodular function f on at least
13 vertices where every minimum 4-partition is 3-size, is called a valid submodular
function. A configuration is valid, if it can be generated by a minimum non-trivial
3-partitionX , and a minimum 4-partition Y of some valid submodular function f .

Let M be some configuration. Consider a submodular function f , such that it has a
minimum non-trivial 3-partitionX and a 3-size minimum 4-partitionY that generate
M . Such functions are called M-agreeable. If there is a minimum 4-partition Y ′ of
f that X is compatible with, then we say M is f -good. If M is f -good for all M-
agreeable f , we say M is good. If M is good, then any configuration equivalent to M
is also good.

If all valid configurations are good, then Theorem 3.1 is true. Indeed, for any valid
submodular function, the minimum non-trivial 3-partition and 3-size minimum 4-
partition generates a good configuration, which implies there is a minimum 4-partition
that does not cross the minimum non-trivial 3-partition.

We use the following idea repeatedly, and hence we make it a proposition.

Proposition 4.1 LetX be aminimum partition with property P, andY be aminimum
partition with property Q. Let X ′ and Y ′ be a partition with properties P and Q,
respectively. If f (X) + f (Y) ≥ f (X ′) + f (Y ′), then Y ′ is a minimum partition
with property Q.

Proof Note that f (X ′) ≥ f (X) and f (Y ′) ≥ f (Y) because X ′ and Y ′ have
properties P and Q, respectively. Hence, we obtain f (X ′) = f (X) and f (Y) =
f (Y ′). ��
In order to simplify the proof and avoid repeating the same set up each time, the

following convention is established.
When we try to prove a valid configuration M is good, we always consider a

minimum non-trivial 3-partition X = {X1, X2, X3}, 3-size minimum 4-partition

123

A polynomial time algorithm for finding a minimum 4-partition…

Fig. 3 The configuration M and partitions Y ′ and X ′ in the proof of Lemma 4.1. To understand the
illustration of Y ′, note it is an colored overlay over the configuration matrix M . Each color represents a
partition class of Y ′. Since the i th row and j th column represents Zi j = Xi ∩ Y j together with additional
cardinally information, the illustration shows Y ′ is a 4-partition with partition classes Z32, Z33, Z34 and
a set containing all the remaining elements

Fig. 4 The configurations in the proof of Theorem 4.1

Y = {Y1,Y2,Y3,Y3} and a valid submodular function f that generates the configura-
tion M . Let Zi j = Xi ∩Y j be the cells ofX andY . Let ni be the number of non-zero
values in the i th row of M , and m j the number of non-zero values in the j th column
of M . From this point on, we omit the setup in all the proofs in this section.

There are simple patterns where the configurations has to be good. The following
is a pattern adopted from [14, Lemma 2.5].

Lemma 4.1 Let M be a configuration. If M11 ≥ 2, and M21, M32, M33, M34 ≥ 1,
then M is good.

Proof Define Y ′ = {X1 ∪ X2 ∪ Y1, Z32, Z33, Z34} and X ′ = {Z11, Z21, X3 ∪ Y2 ∪
Y3 ∪ Y4}. Then X ′ is a non-trivial 3-partition and Y ′ is a 4-partition, and X � Y ′.
See Fig. 3 for illustrations.

For any submodular function f , it holds that

f (X1) + f (Y1) ≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (X2) ≥ f (X1 ∪ X2 ∪ Y1) + f (Z21)

f (X3) + f (Y2) ≥ f (X3 ∪ Y2) + f (Z32)

f (X3 ∪ Y2) + f (Y3) ≥ f (X3 ∪ Y2 ∪ Y3) + f (Z33)

f (X3 ∪ Y2 ∪ Y3) + f (Y4) ≥ f (X3 ∪ Y2 ∪ Y3 ∪ Y4) + f (Z34).

By summing all the inequalities above, we obtain

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

By Proposition 4.1, Y ′ is a minimum 4-partition, which completes the proof. ��
If any configuration equivalent to M satisfies the property in Lemma 4.1, we say

M contains a cross. If M has many non-zero elements, then M contains a cross. We
formalize it below.

123

T. Hirayama et al.

Fig. 5 The configuration M and partitions Y ′ andX ′ in the Case 3 of the proof of Theorem 4.1

Theorem 4.1 If M is a valid configuration where each row has at least 3 non-zero
elements, then it contains a cross, and therefore M is good.

Proof We consider the following 3 cases.
Case 1. m j = 3 for all j ∈ {1, 2, 3, 4}, then M has at least one entry ≥ 2, and all

other values are at least 1. Without loss of generality, assume M11 ≥ 2. See Fig. 4a.
M contains a cross.

Case 2. Assume m j ≥ 2 for all j and not all of them are 3. Without loss of
generality, assume M31 = 0. This implies M32, M33, M34 ≥ 1. Since m1 = 2, we
have that M11, M21 ≥ 1, and at least one is 2. Without loss of generality, let M11 ≥ 2.
See Fig. 4b. This gives us a cross.

Case 3. Consider m j = 1 for some j . Without loss of generality, we can assume
m4 = 1, and M14 = M24 = 0. This shows M34 ≥ 2.We also assume that M32, M33 ≥
1, because n3 ≥ 3.

See Fig. 4c for the configuration.
If M31 = 0, then M21 or M11 is at least 2, and we obtain a cross. Assume that

M31 ≥ 1. If any Mi j for i ∈ {1, 2} and j ∈ {1, 2, 3} is 2, then there exists a cross.
Hence the only remaining case is whenMi j = 1 for all i ∈ {1, 2} and j ∈ {1, 2, 3}. Let
X ′ = {X1 ∪ X2 ∪Y1 ∪Y2, Z33, Z34} and Y ′ = {X3 ∪Y3 ∪Y4, Z11, Z12, Z21 ∪ Z22}.
X ′ is a non-trivial 3-partition. Because Mi j = 1 for each i ∈ {1, 2} and j ∈ {1, 2, 3},
Y ′ is a 4-partition. See Fig. 5 for illustration.

By submodularity, it holds that

f (X3) + f (Y3) ≥ f (X3 ∪ Y3) + f (Z33)

f (X3 ∪ Y3) + f (Y4) ≥ f (X3 ∪ Y3 ∪ Y4) + f (Z34)

f (X1) + f (Y1) ≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2) ≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12)

f (X1 ∪ Y1 ∪ Y2) + f (X2) ≥ f (X1 ∪ X2 ∪ Y1 ∪ Y2) + f (Z21 ∪ Z22).

According to the above, it holds that

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

We invoke Proposition 4.1, and it shows Y ′ is a minimum 4-partition. However,
M11 = 1, and henceY ′ is not 3-size. A contradiction toM being a valid configuration.

��
The following lemma is an adaptation of [14, Lemma 2.7].

123

A polynomial time algorithm for finding a minimum 4-partition…

Fig. 6 The configuration M and partitions Y ′ andX ′ in the proof of Lemma 4.2

Fig. 7 The configuration M and partitions Y ′ andX ′ in Case 2 of the proof of Theorem 4.2

Lemma 4.2 Let M be a valid configuration with a row with exactly two non-zeros.
Then M is good.

Proof Without loss of generality, assume M11, M12 ≥ 1 and M13 = M14 = 0. Let
Y ′ = {Z11, Z12, X2, X3} and X ′ = {X1 ∪ Y1 ∪ Y2,Y3,Y4}. Note that Y ′ is a 4-
partition andX �Y ′. Since Y is 3-size, |Y3| ≥ 2, and thereforeX ′ is a non-trivial
3-partition. See Fig. 6 for illustration.

By submodularity, it holds that

f (X1) + f (Y1) ≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2) ≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12).

According to the above, it holds that

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

By Proposition 4.1, Y ′ is a minimum 4-partition. ��
Theorem 4.2 If M is a valid configuration where there exists a row with at most two
non-zero elements, then it is good.

Proof If any row has exactly 2 non-zero elements, then we are done by Lemma 4.2.
Hence, consider the case where a row has exactly 1 non-zero element, and no row

has exactly 2 non-zero elements. Without loss of generality, let n1 = 1 and M11 ≥ 2.
Case 1: ni = 1 for some i ∈ {2, 3}. Then M is good because X � Y .
Case 2: n2 = n3 = 3,m1 = 1. Then we have Mi1 = 0 for i ∈ {2, 3} and

Mi2, Mi3, Mi4 ≥ 1 for each i ∈ {2, 3}. Since |Y1| ≥ 3, we have M11 ≥ 2.
Let Y ′ = {X2 ∪Y2, X1, Z33, Z34} andX ′ = {X3 ∪Y3 ∪Y4,Y1, Z22}. Then Y ′ is

a 4-partition,X � Y ′, andX ′ is a non-trivial 3-partition. See Fig. 7 for illustration.
By submodularity, it holds that

f (X2) + f (Y2) ≥ f (X2 ∪ Y2) + f (Z22)

123

T. Hirayama et al.

Fig. 8 The configuration M and partitions Y ′ andX ′ in Case 4 of the proof of Theorem 4.2

f (X3) + f (Y3) ≥ f (X3 ∪ Y3) + f (Z33)

f (X3 ∪ Y3) + f (Y4) ≥ f (X3 ∪ Y3 ∪ Y4) + f (Z34).

According to the above, it holds that

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

By Proposition 4.1, Y ′ is a minimum 4-partition.
Case 3: n2, n3 ≥ 3,m1 = 2. Without loss of generality, we can assume that

M21 ≥ 1 and M31 = 0. Since |Y1| ≥ 3, we have M11 ≥ 2 or M21 ≥ 2, i.e.,

M =
2+ 0 0 0
1+ 1+ 1+ ?
0 1+ 1+ 1+

or M =
1+ 0 0 0
2+ 1+ 1+ ?
0 1+ 1+ 1+

.

In either case, there is a cross, and M is good.
Case 4: n1 = 1, n2, n3 ≥ 3,m1 = 3.Without loss of generality, we can assume that

M23 ≥ 1. We also assume that M34 ≥ 1 since n3 ≥ 3. SinceY is 3-size and M12 = 0,
without loss of generality, we can assume that M22 ≥ 2. Otherwise, we can exchange
X2 and X3, and then exchange Y3 and Y4. Let X ′ = {X3 ∪ Y1 ∪ Y4, Z22, Z23} and
Y ′ = {X2∪Y2∪Y3, X1, Z31, Z34}.X ′ is a non-trivial 3-partition,Y ′ is a 4-partition
and X � Y ′. See Fig. 8 for illustration.

By submodularity, it holds that

f (X2) + f (Y2) ≥ f (X2 ∪ Y2) + f (Z22)

f (X2 ∪ Y2) + f (Y3) ≥ f (X2 ∪ Y2 ∪ Y3) + f (Z23)

f (X3) + f (Y1) ≥ f (X3 ∪ Y1) + f (Z31)

f (X3 ∪ Y1) + f (Y4) ≥ f (X3 ∪ Y1 ∪ Y4) + f (Z34).

According to the above, it holds that

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

By Proposition 4.1, Y ′ is a minimum 4-partition. ��
Theorems 4.1 and 4.2 show that all valid configurations are good, and hence prove

Theorem 4.3.

123

A polynomial time algorithm for finding a minimum 4-partition…

Theorem 4.3 If all minimum 4-partition are 3-size, then every minimum non-trivial
3-partition is compatible with some minimum 4-partition.

5 (1, �)-size 3-partition

In this section,wepresent an algorithm for computing aminimumnontrivial 3-partition
for a given submodular function by giving an algorithm for the (1, �)-size 3-partition
problem. This algorithm is based on the following noncrossing property.

Lemma 5.1 Let f : 2V → R be a submodular function with n ≥ 18� − 17, and
let X = {X1, X2} denote a minimum (3� − 2)-size 2-partition of f . If f has a
minimum (1, �)-size 3-partition of (4� − 3)-size, then it contains a minimum (1, �)-
size 3-partition with which X is noncrossing.

Proof LetY = {Y1,Y2,Y3} denote a minimum (1, �)-size 3-partition of (4�−3)-size
of f . Let M be the configuration generated by X and Y . Let Zi j = Xi ∩ Y j .

Suppose any row of M has exactly one non-zero. The proof is trivial.
We say that M contains a cross if there exist i and j such that Mi ′ j ≥ 3� − 2 for

i ′ �= i , M ′
i j ≥ 1 for all j ′ �= j , and M ′

i j ≥ � for some j ′ �= j . We also say that the
cross is centered at (i, j). See Fig. 9 for an example.

If M contains a cross, then there is a minimum nontrivial 3-partition which is
noncrossing with X . Indeed, without loss of generality, let M11 ≥ �, M12 ≥ 1 and
M23 ≥ 3� − 2. Define Y ′ = {X2 ∪ Y3, Z11, Z12} and X ′ = {X1 ∪ Y1 ∪ Y2, Z23}.
CertainlyX �Y ′.We note thatY ′ is a (1, �)-size 3-partition, andX ′ is a (3�−2)-size
2-partition. By submodularity,

f (X1) + f (Y1) ≥ f (X1 ∪ Y1) + f (Z11)

f (X1 ∪ Y1) + f (Y2) ≥ f (X1 ∪ Y1 ∪ Y2) + f (Z12)

f (X2) + f (Y3) ≥ f (X2 ∪ Y3) + f (Z23).

Hence we obtain

f (X) + f (Y) ≥ f (X ′) + f (Y ′).

Therefore, Y ′ is a minimum (1, �)-size 3-partition where X does not cross it.
Consider the case where each row of M has at least 2 non-zero elements. Because

|V | ≥ 18� − 17 and M has 6 entries, at least one entry in M has value at least 3� − 2.
We can assume M23 ≥ 3� − 2. Without loss of generality, let M11 ≥ M12. Next, we
show all possible configurations have a cross.

Case 1: M11 ≥ �, M12 ≥ 1. See Fig. 10a. There is a cross centered at (1, 3).
Case 2: M11 ≥ �, M12 = 0. This shows M13 ≥ 1 and M22 ≥ 3� − 2. See Fig. 10b.

There is a cross centered at (1, 2).
Case 3: 1 ≤ M11 ≤ �−1. This shows M22 ≥ 3�−2, because M12+M22 ≥ 4�−3.

Also, M13 ≥ 4� − 3 − M11 − M12 ≥ �. See Fig. 10c. There is a cross centered at
(1, 2). ��

123

T. Hirayama et al.

Fig. 9 A configuration M , with a cross that is centered at (1, 3). Because M23 ≥ 3� − 2, M11, M12 ≥ 1,
and M11 ≥ �

Fig. 10 The configurations in the proof of Lemma 5.1. Note in Case 3, the top right element is also known
to be non-zero

In order to use the noncrossing property in Lemma 5.1, we need to compute a
minimum (3� − 2)-size 2-partition of the submodular function f .

Vazirani-Yannakakis [30] proposed an algorithm for enumerating all 2-cuts in a
given graph, in the order of nondecreasing weights. Nagamochi-Ibaraki [24] remarked
that Vazirani-Yannakakis’ algorithm can be extended to enumerating all 2-partitions
in an arbitrary system.

For two disjoint sets S, T ⊆ V , a family {X , V \X} is called an (S, T)-partition if
S ⊆ X and T ⊆ V \X .
Lemma 5.2 (Vazirani-Yannakakis [30], Nagamochi-Ibaraki [24]) Let f : 2V → R be
an arbitrary function with n = |V |. All the 2-partitions {X , V \X} of V can be enumer-
ated in the order of nondecreasing weights with O(nτ ∗(n))-time delay between two
consecutive outputs, where τ ∗(n) denotes the time required for computing a minimum
(S, T)-partition of f .

It is well-known that a minimum (S, T)-partition in the submodular function f can
be computed in τ(n) time, i.e., the time required for submodular functionminimization.
The number of 2-partitions that are not k-size is O(nk−1). Thus after enumerating
O(nk−1) 2-partitions, we can find a minimum k-size 2-partition, which implies the
following lemma.

Lemma 5.3 Let f : 2V → R be a submodular function with n = |V |, and let k (≥ 2)
denote a positive integer. A minimum k-size 2-partition of f can be computed in
O(nkτ(n)) time.

We are now ready to describe an algorithm for the minimum nontrivial 3-partition
problem. See Fig. 11. It is similar to both Min3Partition and Min4Partition.

Lemma 5.4 For a submodular function f : 2V → R with n = |V |, there is an
algorithm that computes a minimum (1, �)-size 3-partition of f in O(n4�−3τ(n))

time.

Proof Consider Min(1, �)Size3Partition. Finding the minimum 3� − 2-size 2-
partition takes O(n3�−2τ(n)) time. Finding the minimum non-4�−3-size 3-partitions
takes O(n4�−4τ(n)) time.

123

A polynomial time algorithm for finding a minimum 4-partition…

Fig. 11 Compute a minimum
(1, �)-size 3-partition

Let T (n) denote the running time of Min(1, �)Size3Partition. The following
recursive relation holds. T (n) = O(1) for n ≤ 18� − 17, and otherwise

T (n) = max
a+b=n

1≤a≤b≤n−3�+1

T (a + 1) + T (b + 1) + O(n4�−4τ(n)) = O(n4�−3τ(n)).

��
By setting � = 2, we obtain the following corollary.

Corollary 5.1 For a submodular function f : 2V → R with n = |V |, there is an
algorithm that computes a minimum nontrivial 3-partition of f in O(n5τ(n)) time.

6 Time complexity of AlgorithmMIN4PARTITION

In this section, we analyze the time complexity of Algorithm Min4Partition.
Since the minimum 3-partition problem can be solved in O(n3τ(n)) time [27],

the minimum non-3-size 4-partitions can be found in O(n5τ(n)) time. A minimum
nontrivial 3-partition can be computed in O(n5τ(n)) time by Corollary 5.1.

Let T (n) be the running time of the 4-partition algorithm in Fig. 2 with n = |V |.
The following recursive relation holds. T (n) = O(1) for n ≤ 12, and otherwise

T (n) = max
a+b+c=n

1≤a≤b≤c≤n−3

T (a + 2) + T (b + 2) + T (c + 2) + O(n5τ(n)) = O(n6τ(n)).

As a result, we have the following main theorem.

Theorem 6.1 For a submodular function f : 2V → R with n = |V |, Algorithm
Min4Partition(f) computes a minimum 4-partition of f in O(n6τ(n)) time.

As a minimum k-partition in symmetric submodular functions can be found in
n2k−2 calls to minimum (k − 1)-partition in submodular functions [4], we observe the
following corollary.

Corollary 6.1 For a symmetric submodular function f : 2V → R with n = |V |, a
minimum 5-partition can be found in O(n14τ(n)) time.

123

T. Hirayama et al.

Fig. 12 The 8 vertex
counterexample, the light edge is
the edge of 1/2 weight

7 Concluding remark

In this paper, we have considered the minimum 4-partition problem of submodular
functions. Using compatibility for 3- and 4-partitions, we have provided a polynomial-
time (exact) algorithm, which settles the complexity status of the problem [11, 22, 24,
27, 32, 35].

It is still open if the minimum k-partition problem is solvable in polynomial time
for each fixed k. This is left for future work. Since all our algorithms are very similar,
it seems to indicate a generalization to minimum 5-partition problem.

Unfortunately,we remark the obvious generalization of our algorithmdoes notwork
for minimum 5-partition. Consider the following configuration M , if a submodular
function with unique minimum 4-partition and minimum 5-partition generates it as
a configuration, then the minimum 4-partition is not compatible with any minimum
5-partition.

M =
1+ 0 0 0 0
1+ 0 0 0 0
1+ 1+ 1+ 0 0
1+ 0 0 1+ 1+

.

In fact, even in graphs, there is an infinite number of examples that generates the
above configuration M . Consider a graph on 8 vertices. The vertices are 0 to 7. The
edges are {0, 1}, {1, 2}, {0, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {5, 6}, {5, 7} and
{6, 7}. All edges have unit weight, except the edge {1, 2}, which has weight 1

2 . See the
Fig. 12 for the example.

The graph has a unique minimum 4-partition {0}, {1}, {2, 3, 4}, {5, 6, 7}, which has
value of 4.5. There is also a unique minimum 5-partition. {0, 1, 2, 5}, {3}, {4}, {6}, {7}
with value 6. One can blow up this example to arbitrarily large graph by replacing
each vertex with a clique with large edge weights.

123

A polynomial time algorithm for finding a minimum 4-partition…

Acknowledgements Chaowould like to thankChandra Chekuri andKarthekeyanChandrasekaran for early
discussions.

Funding This workwas partially supported by JST ERATOGrant Number JPMJER2301 and Japan Society
for the Promotion of Science (JSPS) KAK420 ENHI Grant Numbers JP19K22841, JP20H00609, and
JP20H05967.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

References

1. Beideman, C., Chandrasekaran, K., Wang, W.: Counting and enumerating optimum cut sets for hyper-
graph k-partitioning problems for fixed k. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds.)
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 16:1–16:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.
2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16357

2. Beideman, C., Chandrasekaran, K., Wang, W.: Deterministic enumeration of all minimum k-cut-sets
in hypergraphs for fixed k. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 2208–2228. Society for Industrial and Applied Mathematics, Philadelphia
(2022). https://doi.org/10.1137/1.9781611977073

3. Beideman, C., Chandrasekaran, K., Xu, C.: Multicriteria cuts and size-constrained k-cuts in hyper-
graphs. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01732-0

4. Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular
functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’21, pp. 1026–1038. Society for Industrial and Applied Mathematics, USA (2021)

5. Chandrasekaran, K., Chekuri, C.: Hypergraph k-cut for fixed k in deterministic polynomial time.Math.
Oper. Res. (2022). https://doi.org/10.1287/moor.2021.1250

6. Chandrasekaran, K., Xu, C., Yu, X.: Hypergraph k-cut in randomized polynomial time.Math. Program.
186(1–2), 85–113 (2021). https://doi.org/10.1007/s10107-019-01443-7

7. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science, pp. 807–816. IEEE, Palm Springs,
CA, USA (2011). https://doi.org/10.1109/FOCS.2011.34

8. Chekuri, C., Quanrud, K., Xu, C.: LPRelaxation and tree packing forminimum k-cut. SIAM J.Discrete
Math. 34(2), 1334–1353 (2020). https://doi.org/10.1137/19M1299359

9. Chekuri, C., Xu, C.: Minimum cuts and sparsification in hypergraphs. SIAM J. Comput. 47(6), 2118–
2156 (2018). https://doi.org/10.1137/18M1163865

10. Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k-cut in hypergraphs via branching
contractions. In: Proceedings of the ThirtiethAnnualACM-SIAMSymposiumonDiscreteAlgorithms,
pp. 881–896. SIAM (2019)

11. Fukunaga, T.: Computing minimum multiway cuts in hypergraphs. Discrete Optim. 10(4), 371–382
(2013). https://doi.org/10.1016/j.disopt.2013.10.002

12. Gasieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees.
J. Comb. Optim. 3(2/3), 183–197 (1999). https://doi.org/10.1023/A:1009833626004

13. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem for fixed k. Math.
Oper. Res. 19, 24–37 (1994). https://doi.org/10.1287/moor.19.1.24

14. Guinez, F., Queyranne, M.: The size-constrained submodular k-partition problem (2012).
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9n
dWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1. Unpublished manuscript. See also
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf

15. Gupta, A., Harris, D.G., Lee, E., Li, J.: Optimal bounds for the k-cut problem. J. ACM (2021). https://
doi.org/10.1145/3478018

123

https://doi.org/10.4230/LIPIcs.ICALP.2022.16
https://doi.org/10.4230/LIPIcs.ICALP.2022.16
https://drops.dagstuhl.de/opus/volltexte/2022/16357
https://doi.org/10.1137/1.9781611977073
https://doi.org/10.1007/s10107-021-01732-0
https://doi.org/10.1287/moor.2021.1250
https://doi.org/10.1007/s10107-019-01443-7
https://doi.org/10.1109/FOCS.2011.34
https://doi.org/10.1137/19M1299359
https://doi.org/10.1137/18M1163865
https://doi.org/10.1016/j.disopt.2013.10.002
https://doi.org/10.1023/A:1009833626004
https://doi.org/10.1287/moor.19.1.24
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
https://doi.org/10.1145/3478018
https://doi.org/10.1145/3478018

T. Hirayama et al.

16. Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In: 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123 (2018). https://doi.
org/10.1109/FOCS.2018.00020

17. Hirayama, T., Liu, Y., Makino, K., Shi, K., Xu, C.: A polynomial time algorithm for finding aminimum
4-partition of a submodular function. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1680–1691. https://doi.org/10.1137/1.9781611977554.ch64

18. Kamidoi, Y., Yoshida, N., Nagamochi, H.: A deterministic algorithm for finding all minimum k-way
cuts. SIAM J. Comput. 36(5), 1329–1341 (2006). https://doi.org/10.1137/050631616

19. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, FU Berlin
Fachbereich Mathematik und Informatik (1996)

20. Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combina-
torial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68

21. Mak, W.K., Wong, D.F.: Fast hypergraph min-cut algorithm for circuit partitioning. Integr. VLSI J.
30(1), 1–11 (2000). https://doi.org/10.1016/S0167-9260(00)00008-0

22. Nagamochi, H.: Algorithms for the minimum partitioning problems in graphs. Electron. Commun.
Jpn. 90(10), 63–78 (2007). https://doi.org/10.1002/ecjc.20341. (Part III Fundamental Electronic
Science)

23. Nagamochi,H., Ibaraki, T.: Computing edge-connectivity inmultigraphs and capacitated graphs. SIAM
J. Discrete Math. 5(1), 54–66 (1992)

24. Nagamochi, H., Ibaraki, T.: A fast algorithm for computing minimum 3-way and 4-way cuts. Math.
Program. 88(3), 507–520 (2000). https://doi.org/10.1007/PL00011383

25. Nagamochi, H., Katayama, S., Ibaraki, T.: A faster algorithm for computingminimum5-way and 6-way
cuts in graphs. J. Comb. Optim. 4(2), 151–169 (2000). https://doi.org/10.1023/A:1009804919645

26. Okumoto, K., Fukunaga, T., Nagamochi, H.: Divide-and-conquer algorithms for partitioning hyper-
graphs and submodular systems. In: Dong, Y., Du, D.Z., Ibarra, O. (eds.) Algorithms and Computation,
pp. 55–64. Springer, Berlin (2009)

27. Okumoto, K., Fukunaga, T., Nagamochi, H.: Divide-and-conquer algorithms for partitioning hyper-
graphs and submodular systems. Algorithmica (2010). https://doi.org/10.1007/s00453-010-9483-0

28. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82(1), 3–12 (1998).
https://doi.org/10.1007/BF01585863

29. Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pp. 159–165 (2008). https://doi.org/10.1145/
1374376.1374402

30. Vazirani, V.V., Yannakakis, M.: Suboptimal cuts: Their enumeration, weight and number. In: Interna-
tional Colloquium on Automata, Languages, and Programming, pp. 366–377. Springer (1992)

31. Xiao, M.: An improved divide-and-conquer algorithm for finding all minimum k-way cuts. In: Hong,
S.H., Nagamochi, H., Fukunaga, T. (eds.) Algorithms and Computation, pp. 208–219. Springer, Berlin
(2008)

32. Xiao, M.: Finding minimum 3-way cuts in hypergraphs. Inf. Process. Lett. 110(14–15), 554–558
(2010). https://doi.org/10.1016/j.ipl.2010.05.003

33. Yeh, L.P., Wang, B.F., Su, H.H.: Efficient algorithms for the problems of enumerating cuts by non-
decreasing weights. Algorithmica 56(3), 297–312 (2010). https://doi.org/10.1007/s00453-009-9284-
5

34. Zhao, L., Nagamochi, H., Ibaraki, T.: On generalized greedy splitting algorithms for multiway partition
problems. Discrete Appl. Math. 143(1), 130–143 (2004). https://doi.org/10.1016/j.dam.2003.10.007

35. Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for approximatingmultiway partition
problems. Math. Program. 102(1), 167–183 (2005). https://doi.org/10.1007/s10107-004-0510-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1137/1.9781611977554.ch64
https://doi.org/10.1137/050631616
https://doi.org/10.1109/FOCS.2015.68
https://doi.org/10.1016/S0167-9260(00)00008-0
https://doi.org/10.1002/ecjc.20341
https://doi.org/10.1007/PL00011383
https://doi.org/10.1023/A:1009804919645
https://doi.org/10.1007/s00453-010-9483-0
https://doi.org/10.1007/BF01585863
https://doi.org/10.1145/1374376.1374402
https://doi.org/10.1145/1374376.1374402
https://doi.org/10.1016/j.ipl.2010.05.003
https://doi.org/10.1007/s00453-009-9284-5
https://doi.org/10.1007/s00453-009-9284-5
https://doi.org/10.1016/j.dam.2003.10.007
https://doi.org/10.1007/s10107-004-0510-2

	A polynomial time algorithm for finding a minimum 4-partition of a submodular function
	Abstract
	1 Introduction
	2 Preliminaries
	3 Compatibility for 3- and 4-partitions
	3.1 The algorithm

	4 Proof of Theorem 3.1
	5 (1,ell)-size 3-partition
	6 Time complexity of Algorithm Min4Partition
	7 Concluding remark
	Acknowledgements
	References

