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Abstract

The Stacker Crane Problem (SCP) is a variant of the Traveling Salesman Problem. In SCP, pairs
of pickup and delivery points are designated on a graph, and a crane must visit these points to move
objects from each pickup location to its respective delivery point. The goal is to minimize the total
distance traveled. SCP is known to be NP-hard, even on tree structures. The only positive results, in
terms of polynomial-time solvability, apply to graphs that are topologically equivalent to a path or a
cycle.

We propose an algorithm that is optimal for each fixed topology, running in near-linear time.
This is achieved by demonstrating that the problem is fixed-parameter tractable (FPT) when param-
eterized by both the cycle rank and the number of branch vertices.

1 Introduction
In the stacker crane problem (SCP), a stacker crane must retrieve and deliver a set of m items from
and to specified locations within a warehouse. The goal is to determine an optimal order for these
operations, constructing a tour that completes the task while minimizing the total distance traveled.
The problem is typically modeled as a problem on a weighted graph, where the stacker crane moves
between vertices, traversing the edges.

SCP was first studied by Frederickson et al. [10], who provided an equivalent formulation involving
a tour on a mixed graph and designed a 9/5-approximation algorithm. Subsequently, there have been
many studies focused on developing approximation algorithms for various SCP variants [14,18,20].

Regarding exact algorithms, Frederickson and Guan demonstrated that SCP is NP-hard even on
trees [8], ruling out some of the simplest graph classes as candidates for polynomial-time solvability.
However, Atallah and Kosaraju showed that when the input graph is a path, SCP can be reduced to a
minimum spanning tree problem. Moreover, if the input graph is a cycle with n vertices, there exists
an O(m+ n log n)-time algorithm [2]. Frederickson later improved the running time to match that of
finding a minimum spanning tree, and also proving the algorithm to be optimal [9].

Since paths and cycles are topologically equivalent to a single edge or a self-loop, respectively, one
might conjecture that SCP is solvable in polynomial time for any fixed topology. Fixed topologies have
practical significance: the layout of warehouses is usually fixed, often resembling a grid with a limited
number of aisles [4, 17]. For further details on various industrial applications of SCP, we refer readers
to [6].

Our Contributions We present an optimal algorithm for solving the SCP for fixed topologies. Our
algorithm generalizes Frederickson’s approach, reducing to his algorithm when the topology is a path
or a cycle [9]. Because our algorithm is more general, it also serves as an alternative, and we believe
more intuitive, proof of the correctness of Frederickson’s algorithm.
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2 Preliminaries
We consider mixed graphs, which can contain both undirected edges and directed edges, the latter being
referred to as arcs. A graph that contains only arcs is called a directed graph, while one that contains
only undirected edges is called an undirected graph. A vertex is termed a branch vertex if its degree is
at least 3.

For an arc (s, t), s is the tail and t is the head. For an undirected edge, both vertices are tails and
heads. A walk is a sequence of edges such that the tail of the subsequent edge matches the head of
the preceding edge. A tour is a walk that starts and ends at the same vertex. Let MST(m) denote the
worst-case running time for finding a minimum spanning tree in a graph with m edges.

We now provide a graph-theoretical definition of the SCP. In SCP, we are given a simple graph B =
(V, E), called the base graph, together with a list of requests R. A request is an ordered pair of vertices,
represented as an arc. For simplicity, we assume that the requests are distinct, although our results can
handle cases with duplicate requests.

We use the following formulation of SCP, as introduced by Frederickson et al. [10].

Problem 1 (Stacker Crane Problem (SCP)) Given a simple graph B = (V, E) on n vertices and a set of
p arcs R, with a cost function c : E ∪ R→ R+, find a min-cost tour in the mixed graph G = (V, E ∪ R) that
traverses each arc in R exactly once.

Intuitively, by assigning the cost of an arc (s, t) ∈ R to be the length of the shortest st-path in B,
traversing an arc represents moving an object from s to t.

An edge subdivision operation involves inserting a new vertex in the middle of an edge. Specifically,
given an edge uv, we delete the edge, add a new vertex w, and connect u and v via w by adding edges
uw and wv. A graph H is called a subdivision of a graph G if H can be obtained through a sequence
of edge subdivision operations starting from G. Two graphs, G1 and G2, are topologically equivalent if
there exists a graph G that is a subdivision of both G1 and G2. Our goal is to show that SCP for a fixed
topology can be solved in optimal running time.

Problem 2 (Stacker Crane Problem with Fixed Topology (SCP(H))) Given a simple graph B = (V, E)
on n vertices that is topologically equivalent to a graph H, and a set of p arcs R, with a cost function
c : E ∪R→ R+, find a min-cost tour in the mixed graph G = (V, E ∪R) that traverses each arc in R exactly
once.

2.1 Circulations

Consider a mixed graph G = (V, E ∪ A) with a set of undirected edges E and directed arcs A. Assume
an arbitrary orientation on the edges, providing a forward direction. We define δ−(v) and δ+(v) as the
sets of in-edges/in-arcs and out-edges/out-arcs of a vertex v, respectively. Each edge and arc has an
associated lower bound, upper bound, and cost function, denoted as ℓ, u : E ∪A→ Z and c : E ∪A→ R.

A circulation is a function f : E ∪ A→ Z such that
∑

e∈δ−(v) f (e) =
∑

e∈δ+(v) f (e) for every vertex
v ∈ V . The circulation f is feasible with respect to the lower bounds ℓ and upper bounds u if ℓ(e) ≤
f (e)≤ u(e) for every edge e ∈ E ∪ A. Typically, the values of ℓ and u are clear from the context.

The cost of a circulation f under the cost function c is given by
∑

a∈A f (a)c(a)+
∑

e∈E | f (e)|c(e). A
feasible circulation with the minimum cost is called a min-cost circulation. An edge or arc e is termed
fixed if ℓ(e) = u(e). An edge e is considered free if ℓ(e) = −∞ and u(e) =∞. An arc is free if ℓ(e) = 0
and u(e) =∞. The support of f , denoted by supp( f ), is defined as {e | f (e) ̸= 0, e ∈ E ∪ A}.

For a circulation f , we use [ f ] to denote the set of all tours corresponding to f in the natural way:
a tour where f (e) represents the difference between the number of times the tour traverses the edge in
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the forward and backward directions. The set [ f ] is referred to as a homology class, and two tours in
[ f ] are said to be homologically equivalent.

For the SCP problem with input graph G = (V, E ∪ R), the corresponding circulation problem is a
circulation problem on G where each edge in E is free, and each arc in R is fixed with a flow value of 1.
The costs of the edges and arcs remain the same as in the original SCP formulation.

2.2 Cycle space

For an undirected graph G = (V, E), the functions f : E → Z can be represented as vectors in ZE . The
space of circulations is a submodule of ZE , known as the integral cycle space, or simply the cycle space.
If the graph is connected, the dimension of the cycle space is |E| − |V |+ 1 [3]. This value, |E| − |V |+ 1,
is referred to as the cycle rank.

A circulation f is called a unit cycle flow if supp( f ) forms an undirected cycle (after considering all
edges as undirected) and | f (e)| = 1 for all e ∈ supp( f ). Let T be a spanning tree in G. For each edge
uv /∈ T , the fundamental cycle Cuv with respect to T is defined as the unit cycle flow that traverses uv in
the forward direction and then traces back from v to u along the unique path in T .

The fundamental cycles with respect to T form a basis for the cycle space. That is, let C1, . . . , Cr be
the fundamental cycles with respect to T . Then, for any circulation f , we have f =

∑r
i=1λiCi for some

coefficients λ ∈ Zr [15].

2.3 Techniques

Atallah and Kosaraju solved SCP(H) for the cases where H is either a path or a cycle [2]. Using a more
modern and general perspective, their approach can be summarized as a three-step algorithm:

1. Find a min-cost circulation f in the corresponding circulation problem.

2. Find all circulations g such that ∥ f − g∥∞ ≤ b for some bound b.

3. Find a min-cost tour in each homology class [g], and return the minimum.

It is crucial that H is a path or a cycle, as their technique in each of these steps relies heavily on this
property. We describe how to eliminate such a restriction.

In the first step, finding a min-cost circulation when H is either a path or a cycle was solved through
an ad-hoc process in linear time. On a path, such a circulation is unique. For a cycle, they considered
enumerate all possible flow sent along a single edge and search for the minimum. Alternatively, use
a min-cost flow algorithm on a one-tree [13]. Both can obtain linear time algorithm. We show that
min-cost circulation can be solved in linear time for arbitrary fixed H by reducing it to a problem similar
to linear programming in a fixed dimension. See section 4.1.

For the second step, Atallah and Kosaraju showed that b = 0 suffices for paths, leading to an optimal
algorithm. In the same paper, they established a bound of b = p for cycles, where p is the number of
requests. Fortunately, their technique does not explicitly generate all circulations, but instead searches
through them using a binary search, implemented alongside step 3. Later, Frederickson improved the
bound on b to 1 by squeezing the value of the min-cost tour between two one-dimensional functions,
thereby achieving the desired proximity result [9]. This improvement not only made the algorithm
faster but also allowed steps 2 and 3 to be separated.

In general, it is not difficult to argue that for any H, a bound of b = p suffices. The number of feasible
circulations in step 2 would then be O(pr), where r is the cycle rank of B. This is too large to yield a
fast algorithm. Unfortunately, Frederickson’s technique does not generalize to graphs with higher cycle
ranks. Therefore, we need a proximity theorem for arbitrary graphs. This is the most technical part of
our paper. As we will show in section 3, a bound of b = r suffices. The algorithm to explicitly enumerate
O((2r + 1)r) such circulations will be described in section 4.2.
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For the third step, Atallah and Kosaraju found the min-cost tour in a homology class by computing a
minimum spanning tree in an auxiliary graph. The auxiliary graph is constructed by contracting edges
in the circulation that defines the homology class. Once again, computing a minimum spanning tree
suffices because H is a path or a cycle. In section 4.3, we show that the correct problem to solve is the
minimum Steiner tree in the auxiliary graph, which is an NP-hard problem in general. However, since
the number of Steiner branch vertices depends only on H, the running time remains efficient.

3 Proximity result
Let B = (V, E) be the base graph. Consider the mixed graph G = (V, E ∪ R) in the SCP problem and
the corresponding circulation problem on G. Assume f is the min-cost circulation in G. We will show
that there exists a circulation g in G such that the homology class [g] contains the min-cost tour, and
∥ f − g∥∞ ≤ r, where r is the cycle rank of B.

For a unit cycle flow C , we call kC a cycle flow of value k. A circulation f is said to contain a
circulation g if |g(e)| ≤ | f (e)| for each edge e, and g(e) and f (e) have the same sign. A circulation is
called elementary if it does not contain a cycle flow of value 2. Intuitively, this means that no part of the
flow circulates around a cycle more than once. In fact, we prove the proximity result by showing that
f − g is an elementary circulation in B, the undirected base graph.

3.1 Elementary Circulations

For a graph or mixed graph G, let G′ = sym(G) be the directed graph obtained by replacing each edge
with two opposing arcs. Interestingly, we prove the proximity result by considering circulations in the
residual graph of G′, as it is easier to reason about.

A circulation f is called connected if supp( f ) is connected. The residual graph for a given directed
graph G with lower and upper bounds ℓ and u, and a feasible circulation f , is the directed graph G f
along with new lower and upper bounds ℓ f and u f . For each arc a ∈ A, define u f (a) = u(a) − f (a)
and ℓ f (a) = ℓ(a) − f (a). The residual graph G f consists of all arcs for which either u f (a) ̸= 0 or
ℓ f (a) ̸= 0. Note that the lower bounds in the residual graph do not have to be non-negative. However,
it is necessary that ℓ f (a) ≤ 0 ≤ u f (a), meaning that the zero circulation is always feasible. The fixed
arcs in the original graph do not appear in the residual graph, so the complexity of the residual graph
can be much smaller.

One can observe that the SCP can be reduced to a min-cost connected circulation problem on G′ =
(V, A∪R) = sym(G). Here, A are the arcs obtained from symmetrizing E. For arcs in A, the lower bound
is 0 and the upper bound is infinity. For arcs in R, both the lower bound and upper bound are 1. If f ′ is
a min-cost connected circulation in G′, then it corresponds to a min-cost tour of the same cost in G.

Theorem 3.1 Let f be a min-cost circulation in G = (V, E∪R), where arcs in R are fixed to 1, and edges in
E are free. There exists a circulation g such that the min-cost tour is in the homology class [g] and g − f
is an elementary circulation in the base graph B = (V, E).

Proof: Let ∆= g − f . We can choose g such that ∥∆∥1 is minimized. Note that ∆ is a circulation in B
because f and g agree on the fixed arcs in R, hence ∆ is zero outside of E.

Let G′ = sym(G), and let f ′ be the min-cost circulation in G′, which corresponds to the min-cost
circulation f in G in a natural way. Let g ′ be the min-cost connected circulation in G′, such that g(uv) =
g ′(u, v)−g ′(v, u) if (u, v) is the positive orientation of the edge uv. Let∆′ = g ′− f ′, which is a circulation
in B′ = sym(B).

Consider the residual graph G′f ′ . We label the arcs in G′f ′ as follows: for each edge e ∈ E, if one of
the arcs derived from e has negative flow in ∆′, we label it as e−, and the other arc as e+. If an arc has
positive flow, we label it as e+ and the other arc as e−. If both flows are zero, we label them arbitrarily.
Certainly, ∆′ is a feasible circulation in G′f ′ because f ′ +∆′ = g ′ is a feasible circulation in G′.
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Assume ∆ is not elementary. Then, there exists an unit cycle flow C such that 2C is contained in
∆. In terms of G′f ′ , this would imply that ∆′(e+)−∆′(e−)≥ 2 for each e ∈ C . We consider a cycle flow
C ′ in G′f ′ whose undirected version is C , and which uses the maximum number of edges with negative
labels. That is, for each edge e, we set C ′(e+) = 1 if ∆′(e+)> 0 and ∆′(e−) = 0.

Certainly, ∆′ − C ′ is feasible in G′f ′ . The cost of C ′ cannot be negative, since the residual graph of a
min-cost circulation cannot contain a negative cost cycle [1]. This implies that the cost of g ′ − C ′ is no
greater than the cost of g ′.

Additionally, we need to show that supp(g ′− C ′) is connected. For each e ∈ supp(C), there are two
cases:

1. If C ′(e+) = 1, then∆′(e−) = 0 and∆′(e+)≥ 2. Therefore, g ′(e+)−C ′(e+) = f ′(e+)+∆′(e+)−1≥
1. Hence, e+ ∈ supp(g ′ − C ′).

2. If C ′(e−) = −1, then g ′(e−)− C ′(e−) = g ′(e−) + 1≥ 1. Hence, e− ∈ supp(g ′ − C ′).

Since supp(g ′ − C ′) would include at least one of e+ or e− for each e ∈ C , if supp(g ′) is connected,
then supp(g ′ − C ′) is also connected. Because g ′ − C ′ is a connected circulation of no greater cost than
g ′, we have that [g − C] also contains a min-cost tour. However, ∥∆− C∥1 < ∥∆∥1 because ∆ contains
C . This contradicts our choice of ∆ having minimal L1 norm. □

3.2 Elementary Circulations and L∞ Norm

In this section, we bound the number of elementary circulations in a graph using its cycle rank. First,
we strengthen the flow decomposition theorem for circulations, which typically states that a circulation
can be decomposed into m cycle flows, where m is the number of edges [19]. We improve this bound
to r, the cycle rank of the graph.

Theorem 3.2 Every non-negative circulation on a graph with cycle rank r can be decomposed into at most
r non-negative cycle flows. That is, f =

∑r
i=1λiCi , where C1, . . . , Cr are cycle flows and λ1, . . . ,λr ≥ 0.

Proof: We prove this by induction on the cycle rank r.
If the cycle rank is 0, then the graph contains no cycles, and the zero circulation is the only possible

circulation.
Now, consider the case where the cycle rank is r. We can assume the graph is connected; otherwise,

we can apply the proof to each connected component separately. Suppose there exists a cycle C with
positive flow. Let λ=mine∈C f (e). We include λC as a term in the decomposition.

Let D be the set of edges with zero flow after reducing the flow on C by λ. Assume that G−D has k
components. Observe that k ≤ |D|+ 1. If k = |D|+ 1, this would imply that removing a single edge in
D disconnects the graph, contradicting the fact that G contains a cycle C . Hence, k ≤ |D|.

Let the components of G − D be V1, . . . , Vk. By the inductive hypothesis, the remaining circulation
can be decomposed into

∑k
i=1 (|Ei| − |Vi|+ 1) = (m−|D|)−n+k ≤ m−n= r−1 cycle flows. Therefore,

we can decompose f into r cycle flows. □

Next, we show that elementary circulations have a small L∞ norm.

Theorem 3.3 Let f be an elementary circulation in a graph with cycle rank r. Then, ∥ f ∥∞ ≤ r.

Proof: Let f be an elementary circulation. Assume f is non-negative; if not, we reverse the orientation
of the edges with negative flow so that f becomes non-negative. By Theorem 3.2, f can be decomposed
into r non-negative cycle flows. Since f is an elementary circulation, each of the r cycle flows is a unit
cycle flow. Hence, for each edge e, we have f (e) =

∑r
i=1 Ci(e)≤
∑r

i=1 1= r. Therefore, ∥ f ∥∞ ≤ r. □
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The bound in Theorem 3.3 is tight. Consider a cycle rank r graph with 2(r+1) vertices consists of a
path v1, . . . , v2r . There are also edges er−i between v2r−i and v1+i for i ≤ r. See Figure 3.1. It has cycle
rank r. Let Ci be the fundamental cycle using edge ei in the smaller to larger vertex direction, where
i ≥ 1. Consider the circulation f =

∑r
i=1 Ci , it is elementary, and f (e0) = r.
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Figure 3.1. Example graph where there is an elementary circulation where ∥ f ∥∞ = r.

4 The new algorithm
This section describes the optimal algorithm for SCP(H).

4.1 Min-Cost Circulation

Recall that we are interested in finding the min-cost circulation f of G = (V, E ∪R), where f (a) = 1 for
all a ∈ R. The min-cost circulation problem was shown to be solvable in m1+o(1) time, where m is the
number of edges in the graph [5]. In our case, the graph has p+m edges. We can show that there is a
linear time algorithm for base graphs with fixed cycle rank.

Theorem 4.1 Let r be a fixed number. Consider a min-cost circulation problem where the edges are either
fixed or free, and the free edges form a graph with cycle rank r. The min-cost circulation can be found in
O(m) time.

Proof: Let B = (V, E) be the undirected graph containing all the free edges, and let R be the set of fixed
edges. We have G = (V, E∪R). Consider a spanning tree T on B, and let the edges in E \ T be e1, . . . , er .
We define g(λ1, . . . ,λr) to be the cost of the min-cost circulation f in G such that f (e) = 1 for e ∈ R
and f (ei) = λi for 1 ≤ i ≤ r. To find the min-cost circulation, we have to solve minλ g(λ). Note that
there is an integral minimizer, as λi represents the flow value on edge ei , which can always be taken to
be integral.

Finding the minimum is equivalent to solving the following linear program. For each a ∈ R, compute
the fundamental cycle Ca, and let be =

∑

e∈Ca
Ca(e). For each e ∈ E and 1 ≤ i ≤ r, we define Ae,i =

Cei
(e).
Here, A is the edge-fundamental cycle incidence matrix, which is a network matrix [15].

minλ∈RE\T ,x∈RT

∑

e

xe

subject to xe ≥ c(e) |Ae ·λ+ be| ∀e ∈ E

Zemel showed that the minimizer of mathematical programs of the above form can be seen as a
generalization of r-dimensional L1 linear regression, which can be solved using techniques similar to
Megiddo’s constant-dimension linear programming algorithm [16]. Consequently, the problem can be
solved in 2O(2r )m= O(m) time [21]. □
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4.2 Generating Circulations Near the Min-Cost Circulation

In this section, we show how to generate all circulations that are close to the min-cost circulation in
terms of the L∞ norm.

Lemma 4.2 For an undirected graph with cycle rank r, the number of circulations f such that ∥ f ∥∞ ≤ k
is at most (2k+ 1)r and can be found in O((2k+ 1)r m) time.

Proof: Consider any fundamental cycle basis of G, a graph with cycle rank r, with respect to some
spanning tree T . The values on the edges outside T uniquely determine the circulation. For a circulation
f such that ∥ f ∥∞ ≤ k, the absolute value of the flow on each edge outside T is at most k. Hence, there
can be at most 2k + 1 choices for each of the r edges outside T . This shows that there can be at most
(2k+ 1)r circulations with L∞ norm at most k.

To construct all such circulations, we find a fundamental cycle basis C1, . . . , Cr . This takes O(rm)
time. Next, we generate circulations of the form

∑r
i=1λiCi one by one, where −k ≤ λi ≤ k. The

sequence of circulations is generated using a generalized Gray code, so two consecutive circulations
differ in only a single cycle [11]. Therefore, it takes O(m) time to generate a circulation from the
previous circulation by augmenting a cycle. The total running time for generating all circulations with
L∞ norm no larger than k is O((2k+ 1)r m). □

Corollary 4.3 Let f be the min-cost circulation in G. The number of circulations g in G such that ∥ f −
g∥∞ ≤ r is O((2r +1)r) and they can be found in O((2r +1)r m) time, where m is the number of edges in
G.

Proof: By Lemma 4.2, there can be at most (2r + 1)r circulations with L∞ norm no larger than r in
B. These circulations can be computed in O((2r +1)r m) time. For each such circulation h, we compute
g = f + h. This takes an additional O(m) time per circulation. Thus, the total time complexity is
O((2r + 1)r m). □

4.3 Min-Cost Tour in a Given Homology Class

Recall that we are interested in finding the min-cost tour in the homology class [ f ] for some given
circulation f in G = (V, E ∪ R), where f (a) = 1 for a ∈ R.

If f is already connected, then we are done, as we can find a tour that uses each edge e exactly
| f (e)| times. Otherwise, we need to find a tour in [ f ]. Note that in addition to the edges in supp( f ),
some extra edges might need to be used by the tour. Specifically, there are some edges outside supp( f )
that must be traversed both forward and backward exactly once.

To address this, we take G and contract each connected component of supp( f ) into a single vertex.
Let the resulting graph be B′. Note that only edges in E might remain, as all arcs in R have been
contracted. Therefore, B′ is a graph instead of a mixed graph. Moreover, we change the weight of the
edges to twice their original cost since each edge would be traversed once forward and once backward.
We then reduce the problem to the minimum Steiner tree problem.

For a graph G = (V, E) with a set of terminal vertices T ⊆ V , V \ T are called Steiner vertices. A
Steiner tree is a tree that contains all vertices in T . The minimum Steiner tree with respect to a weight
function w : E→ R+ is a Steiner tree of minimum weight.

We are interested in solving the minimum Steiner tree problem on B′, where the terminals are the
contracted vertices. This would give us the minimum set of extra edges the tour has to traverse to
be connected. The minimum Steiner tree problem is NP-hard in general, but note that B′ has only a
bounded number of Steiner branch vertices. The number of Steiner branch vertices in B′ is at most the
number of branch vertices in B. Indeed, the contracted vertices are not Steiner vertices, so all Steiner
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branch vertices must be branch vertices in B. The Steiner vertices of degree 1 and 2 can be preprocessed
away, so only Steiner branch vertices remain [7]. Hence, the minimum Steiner tree can be solved in
O(2k MST(m)) time for a graph containing k Steiner branch vertices and m edges [12].

Since B′ can have at most m edges, the minimum Steiner tree in B′ can be found in O(2k MST(m))
time. This leads us to the following theorem.

Theorem 4.4 For an input mixed graph G = (V, E ∪ R), let f be a circulation where f (a) = 1 for each
a ∈ R. Finding a min-cost tour in [ f ] takes O(p+ 2k MST(m)) time, where m = |E|, p = |R|, and k is the
number of branch vertices in B = (V, E).

4.4 Putting Everything Together

Combining all the components, we obtain the desired algorithm as described in Figure 4.1. We are now
ready to prove our main theorem.

Theorem 4.5 SCP(H) with an input graph of n vertices and p requests can be solved in O(MST(n) + p)
time.

Proof: Let B be the base graph and R be the set of requests. For a fixed topology, the cycle rank r and the
number of branch vertices k are constants. If m is the number of edges in B, then m= n+ r−1= O(n).

Consider the algorithm in Figure 4.1. By Theorem 4.1, computing the min-cost circulation takes
O(m+ p) time. By Corollary 4.3, enumerating all O(1) possible circulations close to the min-cost circu-
lation takes O(m) time. By Theorem 4.4, finding the minimum-cost tour in the homology class of each
circulation takes O(MST(m) + p) time. Using the fact that m= O(n), we obtain a final running time of
O(MST(n) + p). □

The running time in Theorem 4.5 is optimal. The term MST(n) is unavoidable, as finding the mini-
mum spanning tree on n edges can be reduced to SCP(P) in linear time, where P is a path. Moreover,
since reading the input requires at least O(p) time, the term p is also tight.

SC P(B = (V, E), R, c):
G← (V, E ∪ R)
f ← the min-cost circulation
C← all circulations g such that ∥ f − g∥∞ ≤ r
for g ∈ C

record MINCOSTTOURINHOMOLOGYCLASS(G, g, c) as a candidate
return the min-cost candidate

Figure 4.1. Pseudocode for solving SC P given base graph B, requests R and cost function c.

5 Discussion
We simplified the presentation of our results, but our approach can be extended in multiple ways without
increasing the time complexity.

As mentioned earlier in the preliminaries, we can handle duplicate edges in R without altering the
complexity of the algorithm. Furthermore, we can allow demands on edges in R. Specifically, we can
introduce a function d : R→ N such that, for each a ∈ R, the tour is required to traverse a exactly d(a)
times.

Our current cost function is symmetric; for an edge e = uv, traversing from u to v or from v to u
incurs the same cost. However, our algorithm can be adapted to work with asymmetric cost functions
as well.
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MINCOSTTOURINHOMOLOGYCLASS(G, f , c):
〈〈Find the min-cost tour in [ f ]〉〉
H ← contract all components of supp( f ) in G
for each edge e ∈ V (H)

w(e)← 2c(e)
T ← the vertices from contracting a component of supp( f )
S← Minimum Steiner tree on H with weights w and terminals T
W ← construct a tour from S and f
return W

Figure 4.2. Finding the min-cost tour for a given graph G and a circulation f on G

Finally, the algorithm can be extended to handle multiple stacker cranes, each starting at a different
vertex, while optimizing the total distance traversed.

Although we provide an optimal algorithm, the constant factor hidden in the time complexity is
extremely large, making it impractical for real-world applications. If the fixed topology has cycle rank
r and k branch vertices, then the hidden factor is 2O(2r ) + (2r + 1)r · 2k. The bottleneck of 2O(2r ) arises
from solving the min-cost flow problem on a graph that is a tree with r additional edges. In practice,
one can use slower, off-the-shelf min-cost flow algorithms to avoid the exponential dependency on r.
However, there are two potential avenues for improvement:

1. The problem is very close to linear programming in a constant dimension, so techniques other
than Megiddo’s algorithm might be beneficial for improving the running time.

2. In the proof of Theorem 4.1, the matrix A is a network matrix, but Zemel’s algorithm is designed
for arbitrary matrices. This presents another opportunity for optimization.

The factor (2r + 1)r is unlikely to be significantly improved if we need to enumerate all elementary
circulations, as their number can be exponential with respect to r. However, there may be strategies
to only consider a much smaller subset of elementary circulations. For example, our enumeration of
elementary circulations is independent of cost information, which could be leveraged to reduce the
search space.
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