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Abstract

We study the connections between strong spatial mixing and zero-freeness, the two main
notions used to devise deterministic approximation algorithms for counting problems. Following
a recent framework introduced by [Reg23] for the vertex model, we show that the implication
from zero-freeness of the partition function to strong spatial mixing also works for the matching
polynomial, a typical counting problem in the edge model. Based on Heilmann and Lieb’s
results, a zero-free region C∆ = C\(−∞,− 1

4(∆−1) ] of the partition function and a Christoffel–

Darboux type identity, we give a very simple proof for strong spatial mixing of the matching
polynomial on graphs of degree bounded by ∆ with any complex edge parameter z ∈ C∆. This
proof does not rely on the tree recursion which is commonly used for proving strong spatial
mixing in previous results.
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1 Introduction

A matching of a graph G is a set of edges such that no two edges share a common vertex. We
denote by M(G) the set of all matchings of G. In the paper, we study the matching (generating)
polynomial defined as MG(z) =

∑
M∈M(G) z

|M |. The evaluation of MG(z) at z = 1 counts the
number of matchings of G, which is a canonical problem in the #P class for counting problems
and in particular, the framework of Holant problems [CLX08]. The matching polynomial is also
referred to as the partition function of the monomer-dimer model, one of the most fundamental
models in statistical physics. In the classical work of Heilmann and Lieb [HL72], the partition
function MG(z) is defined as a complex function and by studying its complex zeros, a notion of
(absence of) phase transition is proved in terms of smoothness properties of the free energy function
logMG(z). Furthermore, in quantum theory, it is shown that the quantum evolution of a system
in thermodynamic equilibrium is equivalent to the partition function of the system with complex
parameters [WCPL14]. Thus, it is meaningful to consider MG(z) with complex parameters z.

The exact computation of MG(z) is #P-hard for all z ∈ C except for the trivial point z = 0
[CGW13]. So the focus on MG(z) has been to find approximate solutions. The pioneering algo-
rithm developed by Jerrum and Sinclair [JS89, JS96] gives the first fully polynomial randomized
approximation scheme (FPRAS) for counting matchings. This algorithm is based on the Markov
chain Monte Carlo (MCMC) approach which uses rapidly mixing Markov chains to obtain appro-
priate random samples for a sampling problem equivalent to the original counting problem. Since
this is a probabilistic approach, it gives randomized algorithms and works only for non-negative
real parameters z.

When it comes to deterministic approximation algorithms, there are two approaches, which are
related to the two standard notions of phase transitions in statistical physics respectively. One
notion is the location of zeros of the partition function mentioned above. The other notion is
correlation decay which refers to that correlations between edges decay exponentially with the dis-
tance between them. In [vdB99], a form of correlation decay known as the complete analyticity
condition was established using a probabilistic argument. The method associated with correlation
decay, or more precisely strong spatial mixing (SSM) was originally developed by Weitz [Wei06] for
the hard-core model. By establishing SSM on computation trees or equivalently self-avoiding walk
trees using a recursion formula, [BGK+07] apply this approach to give a fully polynomial determin-
istic approximation scheme (FPTAS) for the matching polynomial with non-negative parameters
on graphs of bounded degree. Later, the SSM result and FPTAS were extended to arbitrary
complex parameters that are not negative and the requirement of bounded degree for graphs was
relaxed to bounded connective constant in [BGGŠ21]. The approach turning complex zero-free
regions of the partition function into FPTASes was developed by Barvinok [Bar16], and extended
by Patel and Regts [PR17]. Based on Heilmann–Lieb theorem [HL72] which gives a zero-free region
C\(−∞,− 1

4(∆−1) ] denoted by C∆ for the matching polynomial MG(z) on graphs of degree bounded

by ∆, (i.e., MG(z) ̸= 0 for any G of degree bounded by ∆ and z ∈ C∆), an FPTAS can be obtained
for the matching polynomial on the zero-free region (via a reduction to the hard-core model using
line graphs).

As a series of approximation algorithms have been devised using these three methods for various
counting problems including the matching polynomial, it is becoming a very intriguing question
that whether these different methods, in particular the two deterministic methods related to the
notions of phase transitions show some inherent connections. This question attracts much research.
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Recent results showed that one can extend real parameters in which correlation decay exists to their
complex neighborhoods where the partition function is zero-free for the hard-core model [PR19],
the Ising model [LSS19a,PR20,LSS19b], and the general 2-spin system [SS21] on graphs of bounded
degree. On the other hand, Gamarnik [Gam23] showed that zero-freeness of the partition function
directly implies a weak form of SSM for the hard-core model and other graph homomorphism
models on graphs with certain properties. Later, Regts [Reg23] formally showed that zero-freeness
in fact implies SSM for these models, and then the implication was extended to the general 2-spin
system with complex parameters [SY24].

The models for which connections between correlation decay and zero-freeness have been es-
tablished including the 2-spin system and the graph homomorphism model are all vertex models
in which values are assigned to vertices and constraint functions are labelled on edges. Another
framework for counting problems is the edge-model, also known as the Holant problem, in which
values are assigned to edges and constraint functions are labelled on vertices. The matching poly-
nomial is a problem in the edge model in which each edge takes a value 0 or 1 and each vertex of
degree d is labelled by a d-ary function fd(x) where fd(x) = 1 if its Hamming weight wt(x) ≤ 1 and
fd(x) = 0 otherwise. It is proved that the edge-model is more expressive than the vertex model.
There are problems in the edge model, for example the problem of counting perfect matchings
which are provably not expressible as a problem in the vertex model [FLS07,CG22]. In this paper,
we show that the implication from zero-freeness to SSM also holds for the matching polynomial, an
edge-model problem. Our proof is based on the framework introduced by [Reg23] and developed
by [SY24], namely local dependence of coefficients (LDC) and a uniform bound implies SSM, and
a Christoffel–Darboux type identity implies LDC. A Christoffel–Darboux type identity is proved
for the matching polynomial also in the same paper [HL72]. Thus, based on Heilmann and Lieb’s
results on the zero-free region and a Christoffel–Darboux type identity, we give a very simple proof
for SSM of the matching polynomial. In addition, by reducing the matching polynomial to the
independence polynomial using line graphs, we prove an edge type SSM for the matching polyno-
mial using a Christoffel–Darboux type identity for the independence polynomial. The proof is even
slightly simpler than the proof of the standard vertex type SSM. The two types of SSM are indeed
equivalent.

Below, we formally describe our results and we give some necessary notations. Let G be a
graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. For a set S ⊆ V (G),
we use G\S to denote the graph obtained from G by deleting all vertices in S and their incident
edges. For a vertex v ∈ V (G), let G\v = G\{v}. For a set A ⊆ E(G), we use G−A to denote the
graph obtained from G by removing all edges in A. For an edge e ∈ E(G), let G − e = G − {e}.
We define the following vertex-type and edge-type ratio functions respectively, PG,v(z) =

MG\v(z)

MG(z) ,

and PG,e(z) =
MG−e(z)
MG(z) . Note that both PG,v(z) and PG,e(z) are well-defined and analytic on the

zero-free region of MG(z). In particular, when z is a positive number PG,v(z) refers to the marginal
probability that v is unmatched and PG,e(z) refers to the marginal probability that e is a unmatched
edge in the Gibbs distribution.

Let dG(u, v) denote the distance between two vertices u and v in a graph G. Also, Let dG(e, e
′)

denote the distance between two edges e and e′ in a graph G, i.e., the shortest distance between their
endpoints. For a vertex v ∈ V (G) and a vertex set S ⊆ V (G), we define dG(v, S) = minu∈S dG(v, u).
Also, for an edge e ∈ E(G) and an edge set A ⊆ E(G), we define dG(e,A) = mine′∈A dG(e, e

′). The
symmetric difference of any two sets A and B is (A\B) ∪ (B\A), denoted by A ̸= B.
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Definition 1.1 (vertex-type SSM). Let G be a family of graphs closed under taking subgraphs
and z ∈ C. The matching polynomials defined on G with the parameter z is said to satisfy vertex-
type strong spatial mixing (SSM) if exist constants C > 0 and r > 1 such that for any graph
G = (V,E) ∈ G, any vertex v ∈ V , any two vertex sets A,B ⊆ V \v, we have∣∣PG\A,v(z)− PG\B,v(z)

∣∣ ≤ Cr−dG(v,A̸=B).

This form of SSM is essentially the one proved in [BGK+07,BGGŠ21]. We roughly explain why
it leads to an FPTAS. By Godsil’s SAW tree construction, for a graph G = (V,E) and a vertex
v ∈ V , let T be the SAW tree rooted of G at v. Then PG,v(z) = PT,v(z). If the above SSM
property is satisfied, then one can truncate the SAW tree T at a depth of O(log n) where n = |V |
is the size of G, and compute PT ′,v(z) for the remaining tree T ′ in polynomial time given the graph
G has a constant bounded degree. Here, the SSM property ensures that the error introduced by
the truncation on the tree T is bounded by O(1/n), which gives an FPTAS. Note that although
our proof of SSM is based on zero-freeness, and does not rely on the tree recursion which is a
commonly used argument for SSM as in [BGK+07,BGGŠ21], the tree recursion is still needed in
order to get an FPTAS from SSM. The next definition of edge-type SSM is actually the original
form of correlation decay proved in [vdB99]. It is indeed equivalent to the vertex-type SSM.

Definition 1.2 (edge-type SSM). Let G be a family of graphs closed under taking subgraphs and
z ∈ C. The matching polynomials defined on G with the parameter z is said to satisfy edge-
type strong spatial mixing (SSM) if exist constants C > 0 and r > 1 such that for any graph
G = (V,E) ∈ G, any edge e ∈ E, and any two edge sets A,B ⊆ E\e, we have

|PG−A,e(z)− PG−B,e(z)| ≤ Cr−dG(e,A̸=B).

Now, we give our main result.

Theorem 1.3. For any z ∈ C∆, the matching polynomials on all graphs of degree bounded by ∆
with the parameter z exhibit both vertex-type SSM and edge-type SSM.

2 Preliminaries

2.1 Matching defect polynomial and independence polynomial

The matching defect polynomial is defined as µG(z) =
∑

M∈M(G)(−1)|M |zn−2|M |. It is related to
the matching generating polynomial MG(z) by the following identities

µG(z) = znMG(−z−2), MG(z) = (−z)
n
2 µG((−z)−

1
2 ).

Heilmann-Lieb Theorem gives locations of zeros for both MG(z) and µG(z).

Theorem 2.1. Let ∆ be the maximum degree of G. The roots of MG(z) lie in the interval
(−∞,− 1

4(∆−1) ] and the roots of µG(z) lie in the interval [−2
√
∆− 1, 2

√
∆− 1].

The matching polynomial MG(z) can also be expressed as the independence polynomial of some
special graphs called line graphs. An independent set of graph G is a set of vertices such that no
two vertices are adjacent by an edge. For a graph G, the independence polynomial of G is defined
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as IG(z) =
∑

S∈I z
|S| where I is the set of all independent sets of G. For a graph G, the line graph

L(G) of G is a graph whose vertices are one-to-one mapped to edges of G, and two vertices in L(G)
are adjacent if and only if the corresponding edges in G share a common vertex. Let IL(G)(z) be
the independent polynomial of the line graph L(G), then MG(z) = IL(G)(z).

It is easy to check that MG1∪G2(z) = MG1(z)MG2(z) for the disjoint union G1 ∪G2 of any two
graphs G1 and G2, and M{v}(z) = 1 for any isolated vertex v.

2.2 LDC and uniform bound implies SSM

The framework that LDC and uniform bound implies SSM was originally introduced in [Reg23].
Here, we adopt the definition of LDC from [SY24]. For two complex functions f(z) and g(z) analytic
near 0, we denote by zk | f(z) − g(z) the property that their Taylor series f(z) =

∑∞
i=0 aiz

i and
g(z) =

∑∞
i=0 biz

i near z = 0 satisfy ai = bi for 0 ≤ i ≤ k − 1.

Definition 2.2 (LDC). Let G be a family of graphs closed under taking subgraphs, and U be a
complex region containing 0. The matching polynomials defined on G ∈ G and z ∈ U is said
to satisfy local dependence of coefficients (LDC) on vertices if for any graph G ∈ G, any vertex
v ∈ V (G), and any two vertex sets A,B ⊆ V (G)\v, the functions PG\A,v(z) and PG\B,v(z) are

analytic on U , and zdG(v,A̸=B) | PG\A,v(z)− PG\B,v(z).
Similarly, one can define edge-type LDC for edge-type ratio functions PG−A,e(z) and PG−B,e(z).

Remark 2.3. By Heilmann–Lieb Theorem, MG(z) ̸= 0 for G of degree bounded by ∆ and z ∈ C∆.
Then, for any graph G of degree bounded by ∆, and v ∈ V (G) and e ∈ E(G), the ratio functions
PG,v(z) and PG,e(z) are always analytic on z ∈ C∆. Thus, in order to prove LDC, we only need to
focus on the Taylor series of ratio functions near z = 0.

Exactly following the proofs in [SY24], we have the following lemma.

Lemma 2.4. Let G be a family of graphs closed under taking subgraphs, U and U ′ be complex
regions containing 0 such that ∂U ′ ⊆ U . Suppose that the matching polynomials defined on G ∈ G
satisfy vertex-type LDC for z ∈ U , and there exists a constant C such that for all G ∈ G and
v ∈ V (G), |PG\v(z)| ≤ C holds on z ∈ ∂U ′. Then, for any z ∈ U ′, the matching polynomials
defined on G with parameter z satisfy vertex-type SSM.

Similarly, edge-type LDC and a uniform bound for |PG,e(z)| implies edge-type SSM.

In [Reg23], Regts introduce Montel’s theorem to get a uniform bound for a family of analytic
functions. In particular, the following lemma is proved.

Lemma 2.5. Let U be a complex region and F be a family of holomorphic functions f : U → C
such that f(U) ⊂ C\{0, 1} for all f ∈ F . If there exists z0 ∈ U and C > 0 such that |f(z0)| ≤ C
for all f ∈ F . Then for any compact subset S ⊂ U , there exists a positive constant C1 such that
for all f ∈ F and z ∈ S, we have |f(z)| ≤ C1.

With these tools in hands, we prove vertex-type and edge-type SSM respectively in Section 3
and 4. In Section 3.1, we prove vertex-type LDC using a Christoffel–Darboux type identity for
the matching polynomial, and show that the vertex ratio functions PG,v(z) avoid 0 and 1 using an
interlace lemma which is a key part in the proof of Heilmann–Lieb theorem. In Section 4.1, we
reduce the matching polynomial to the independence polynomial on corresponding line graphs and
prove edge-type LDC using a Christoffel–Darboux type identity for the independence polynomial.
In the case, the fact that the edge ratio functions PG,e(z) avoid 0 and 1 is a straightforward corollary
of Heilmann–Lieb theorem.
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3 Vertex-type SSM

3.1 Vertex-type LDC

The following is a Christoffel–Darboux type identity for the matching defect polynomial.

Lemma 3.1 ( [HL72] ). Let G be a graph, u, v ∈ V (G) (u ̸= v), and Pu,v be the set of paths from
u to v in G. Then

µG\u(z)µG\v(z)− µG(z)µG\{u,v}(z) =
∑

P∈Pu,v

µG\P (z)
2.

Then, we have a Christoffel–Darboux type identity for the matching generating polynomial.

Lemma 3.2. Let G be a graph, u, v ∈ V (G) (u ̸= v), and Pu,v be the set of paths from u to v in
G. Then

MG\u(z)MG\v(z)−MG(z)MG\{u,v}(z) =
∑

P∈Pu,v

(−z)|P |−1MG\P (z)
2.

Proof. Recall that µG(z) = znMG(−z−2), and MG(z) = (−z)
n
2 µG((−z)−

1
2 ). Let t = −z. Then,

MG\u(z)MG\v(z)−MG(z)MG\{u,v}(z)

=t
n−1
2 µG\u(t

− 1
2 )t

n−1
2 µG\v(t

− 1
2 )− t

n
2 µG(t

− 1
2 )t

n−2
2 µG\{u,v}(t

− 1
2 )

=tn−1
[
µG−u(t

− 1
2 )µG−v(t

− 1
2 )− µG(t

− 1
2 )µG−u−v(t

− 1
2 )
]

=
∑

P∈Pu,v

tn−1µG\P (t
− 1

2 )2

=
∑

P∈Pu,v

t|P |−1
[
t
n−|P |

2 µG\P (t
− 1

2 )
]2

=
∑

P∈Pu,v

(−z)|P |−1MG\P (z)
2.

Now we can prove vertex-type LDC using the above Lemma.

Lemma 3.3. Let G be a graph, v ∈ V (G), and A ⊆ V (G)\{v}, then the Taylor series of PG,v(z)
and PG\A,v(z) near 0 satisfy zdG(v,A) | PG,v(z)− PG\A,v(z).

Proof. We prove this by induction on |A|. For the base case |A| = 1, for instance A = {u}, we have

PG,v(z)− PG\A,v(z) =
MG\v(z)

MG(z)
−

MG\{u,v}(z)

MG\u(z)
=

MG\u(z)MG\v(z)−MG(z)MG\{u,v}(z)

MG(z)MG\u(z)
.

Clearly 1
MG(z)MG−u(z)

is an analytic function on C∆ containing 0. Combining Lemma 3.2, we have

zdG(v,u) | PG,v(z)− PG\A,v(z).
Now consider the case that k ≥ 2. Suppose that the statement is true for all |A| < k. Consider

a vertex set A with |A| = k. Let u ∈ A, and A′ = A\{u}, then

PG(z)− PG\A,v(z) =
[
PG(z)− PG\A′,v(z)

]
+
[
PG\A′,v(z)− PG\A,v(z)

]
.

5



By the induction hypothesis, we have zdG(v,A′) | PG(z)−PG\A′,v(z) and zdG\A′ (v,u) | PG\A′,v(z)−
PG−A,v(z). Since dG(v,A) ≤ dG(v,A

′) and dG(v,A) ≤ dG(v, u) ≤ dG\A′(v, u), we have zdG(v,A) |
PG(z)− PG\A,v(z).

Lemma 3.4. Let G be a graph, v ∈ V (G), and A,B ⊆ V (G)\{v}, then the Taylor series of
PG\A,v(z) and PG\B,v(z) near 0 satisfy zdG(v,A̸=B) | PG\A,v(z)− PG\B,v(z).

Proof. Let G′ = G\(A ∩B), A′ = A\B, B′ = B\A, then

PG\A,v(z)−PG\B,v(z) = PG′\A′,v(z)−PG′\B′,v(z) =
[
PG′\A′,v(z)− PG′,v(z)

]
+
[
PG′,v(z)− PG′\B′,v(z)

]
By the previous lemma, we have zdG′ (v,A′) | PG′,v(z) − PG′\A′,v(z) and zdG′ (v,B′) | PG′,v(z) −
PG′\B′,v(z). Since dG(v,A ̸= B) = min{dG(v,A′), dG(v,B

′)} ≤ min{dG′(v,A′), dG′(v,B′)}, we
are done.

3.2 Uniform bound of vertex type ratio

Definition 3.5 (interlace). Let p(z) = C1
∏n

i=1(z − λi) and q(z) = C2
∏m

i=1(z − γi) be two real-
rooted polynomials (i.e., all λi, γi ∈ R) where C1C2 ̸= 0 and m = n − 1 or m = n. We say q(z)
interlaces p(z) if λ1 ≥ γ1 ≥ λ2 ≥ γ2 ≥ · · · .

The next interlace lemma is a key step in the proof of Heilmann–Lieb Theorem [HL72].

Lemma 3.6. Let G = (V,E) be a graph, for all v ∈ V , then µG\v(z) interlaces µG(z). Also, if
f(z) is a convex combination of {µG\v(z)|v ∈V}, then f(z) interlaces µG(z).

In particular, for a non-isolated vertex v ∈ V ,
∑

u∼v µG\{u,v}(z) interlaces µG\v(z) where u ∼ v
denotes that vertices u and v are adjacent.

We are ready to prove the vertex-type ratio functions avoid 0 and 1.

Lemma 3.7. Let G be a graph with n vertices and bounded degree ∆ and v be an vertex in G. If
z ∈ C∆\{0} and v is not isolated in G , then PG,v(z) avoid 0 and 1.

Proof. By Heilmann–Lieb Theorem, it is trivial that PG,v(z) ̸= 0. We prove PG,v(z) ̸= 1. Note

MG(z)−MG\v(z) = z
∑
u∼v

MG\{u,v}(z).

Prove all roots of
∑

u∼v MG\{u,v}(z) is in the interval (−∞,− 1
4(∆−1) ] is enough to show PG,v(z)

avoid 1. Since
∑

u∼v µG\{u,v}(z) = zn−2
∑

u∼v MG\{u,v}(−z2), show all roots of
∑

u∼v µG\{u,v}(z)

in the interval [−2
√
∆− 1, 2

√
∆− 1] is enough.

Still by Heilmann–Lieb Theorem, all n−1 roots of µG\v(z) lie in the interval [−2
√
∆− 1, 2

√
∆− 1].

Since v is not isolated inG,
∑

u∼v µG−{u,v}(z) is not identically zero, by Lemma 3.6,
∑

u∼v µG\{u,v}(z)
is real-rooted and interlaces µG\v(z). Thus all n − 2 roots of

∑
u∼v µG\{u,v}(z) lie in the interval

[−2
√
∆− 1, 2

√
∆− 1]. Then PG,v(z) avoid 1.

Lemma 3.8. Let ∆ ≥ 2, and S is a compact subset of C∆\{0}. There exists a constant C > 0 such
that for any graph G with bounded degree ∆, any v ∈ V (G), and any z ∈ S, we have |PG,v(z)| ≤ C.
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Proof. When v is isolated in G, PG,v(z) = 1. Thus we only need to consider the case when v is
not isolated in G. By Lemma 3.7, we know that PG,v(z) avoid 0 and 1 for all z ∈ C∆\{0}. Since
0 < PG,v(1) < 1 for all G, v ∈ V (G). Then by Lemma 2.5, the upper bound is got.

Remark 3.9. By the same approach, we can also prove a lower bound for the ratio functions
PG,v(z). Although such a lower bound is not used for the proof of SSM, it is necessary for
the FPTAS. Such an FPTAS computes the matching polynomial by telescoping, i.e., MG(z) =∏

i=1,n
1

PGi,vi
(z) where v1, v2, · · · , vn are all vertices in G and Gi = G\{v1, v2, · · · , vi−1}. A lower

bound of PG,v(z) together with an upper bound ensures that the telescoping computation eventually
gives an (1± ϵ) multiplicative approximation.

Combining Lemmas 3.4, 3.8 and 2.4, we can establish vertex-type SSM.

Theorem 3.10. For any z ∈ C∆, the matching polynomials on all graphs of degree bounded by ∆
with the parameter z exhibit vertex-type SSM.

4 Edge-type SSM

We prove edge-type SSM in a similar way to vertex-type SSM. Technically, the proof is even simpler.

4.1 Edge-type LDC

We prove edge-type LDC using the following result from the Christoffel–Darboux type identities
for the independence polynomial [Ben18].

Lemma 4.1. Let G be a graph, u, v ∈ V (G) where u ̸= v. Then

zdG(u,v)+1|IG\u(z)IG\v(z)− IG(z)IG\{u,v}(z).

Lemma 4.2. Let G and e1, e2 be two different edges in G. Then

zdG(e1,e2)+2 | MG−e1(z)MG−e2(z)−MG(z)MG−{e1,e2}(z).

Proof. Let u, v be the two vertices in the line graph L(G) of G corresponding to the edges e1, e2 in
G respectively. Recall that MG(z) = IL(G)(z). Thus, we have

MG−e1(z)MG−e2(z)−MG(z)MG−{e1,e2}(z) = IL(G)\u(z)IL(G)\v(z)− IL(G)(z)IL(G)\{u,v}(z).

Note dL(G)(u, v) = 1 + dG(e1, e2). By Lemma 4.1, we have zdG(e1,e2)+2 | MG−e1(z)MG−e2(z) −
MG(z)MG−{e1,e2}(z).

Then, same as the proofs Lemmas 3.3 and 3.4, we get the next lemma.

Lemma 4.3. Let G be a graph, e ∈ E(G), and A,B ⊆ E(G) − e. Then, the Taylor series near 0
of PG−A,e(z) and PG−B,e(z) satisfy zdG(e,A ̸=B)+2 | PG−A,e(z)− PG−B,e(z).

7



4.2 Uniform bound of edge-type ratio

Lemma 4.4. Let G be a graph with bounded degree ∆ and e be an edge in G. If z ∈ C∆\{0}, then
PG,e(z) avoids 0 and 1.

Proof. By Heilmann–Lieb Theorem, PG,e(z) ̸= 0 is trivial. We prove PG,e(z) ̸= 1. Assume e =
(u, v). A simple observation is MG(z) − MG−e(z) = zMG\{u,v}(z). Again by Heilmann–Lieb
Theorem, MG\{u,v}(z) ̸= 0. Also since z ̸= 0, we have MG(z)−MG−e(z) ̸= 0, and hence PG,v(z) ̸=
1.

Same as the proof of Lemma 3.8, we can get a uniform bound.

Lemma 4.5. Let ∆ ≥ 2, and S is a compact subset of C∆\{0}. There exists a constant C > 0
such that for any graph G with bounded degree ∆, any e ∈ E(G), and any z ∈ S, |PG,e(z)| ≤ C.

Thus, we have the following edge-type SSM.

Theorem 4.6. For any z ∈ C∆, the matching polynomials on all graphs of degree bounded by ∆
with the parameter z exhibit edge-type SSM.

5 Equivalence of vertex-type and edge-type SSM

We first give the following alternative definitions of vertex-type and edge-type SSM respectively.
For a graph G, a vertex v ∈ V (G), and an integer k ≥ 0, define NG(v, k) to be the subgraph of
G induced by the vertices within distance k from v. Similarly, we can define NG(e, k) for an edge
e ∈ E(G) as the subgraph of G induced by the vertices within distance k from the endpoints of e.
G ∼= H indicates the standard graph isomorphism.

Definition 5.1 (vertex-type SSM). Let G be a family of graphs closed under taking subgraphs and
z ∈ C. The matching polynomials defined on G with the parameter z is said to satisfy vertex-type
SSM if exists constants C > 0, r > 1 such that for two graph G1, G2 ∈ G, v1 ∈ V (G1), v2 ∈ V (G2),
if NG1(v1, k)

∼= NG2(v2, k) where v1 and v2 are the corresponding vertices, then

|PG1,v1(z)− PG2,v2(z)| ≤ Cr−k.

Definition 5.2 (edge type SSM). Let G be a family of graphs closed under taking subgraphs and
z ∈ C. The matching polynomials defined on G with the parameter z is said to satisfy edge-type
SSM if exists a positive constants C > 0, r > 1 such that for any two graph G1, G2 ∈ G, e1 ∈ E(G1),
e2 ∈ E(G2), if NG1(e1, k)

∼= NG2(e2, k) where e1 and e2 are the corresponding edges, then

|PG1,e1(z)− PG2,e2(z)| ≤ Cr−k.

One can easily check that Definitions 1.1 and 1.2 are equivalent to Definitions 5.1 and 5.2 re-
spectively. Below, we prove the equivalence of vertex-type and edge-type SSM using Definitions 5.1
and 5.2. We need the following technical result.

Lemma 5.3. Let {xi}ni=1 and {yi}ni=1 be two sequences of complex numbers, ε and C be two positive
constants, where |xi| ≤ C, |yi| ≤ C and |xi − yi| ≤ ε for all i. Then |

∏n
i=1 xi −

∏n
i=1 yi| ≤ nCn−1ε.
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Proof. We prove it by induction on n. For the base case n = 1, the statement is trivial. Suppose
the statement is true for n = k, then for n = k + 1, we have∣∣∣∣∣

k+1∏
i=1

xi −
k+1∏
i=1

yi

∣∣∣∣∣
=

∣∣∣∣∣xk+1

(
k∏

i=1

xi −
k∏

i=1

yi

)
+

k∏
i=1

yi(xk+1 − yk+1)

∣∣∣∣∣
≤C · kCk−1ε+ Ckε = (k + 1)Ckε.

Thus we are done.

Theorem 5.4. The matching polynomials defined on graphs of bounded degree ∆ exhibit vertex-type
SSM if and only if they exhibit edge-type SSM,

Proof. In matching generating polynomial, delete a vertex is equivalent to delete all edges incident
to the vertex (noting the polynomial of a single vertex is 1). In the bounded degree graph, vertex
ratio can be write the product of at most ∆ edge type ratio. Assuming the edges attached to v is
e1, e2, · · · , ek and Gi = G− {e1, e2, · · · , ei−1}, then PG,v(z) =

∏k
i=1 PGi,ei(v). Thus we can get the

vertex ratio SSM from the edge ratio SSM.

Also, write e = (u, v), since PG,e(z) = 1− z
MG\{u,v}(z)

MG(z) = 1− zPG,v(z)PG\v,u(z), we can get the
edge ratio SSM from the vertex ratio SSM.
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