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Abstract

We present a Weitz-type FPTAS for the ferromagnetic Ising model across the entire Lee–Yang
zero-free region, without relying on the strong spatial mixing (SSM) property. Our algorithm
is Weitz-type for two reasons. First, it expresses the partition function as a telescoping product
of ratios, with the key being to approximate each ratio. Second, it uses Weitz’s self-avoiding
walk tree, and truncates it at logarithmic depth to give a good and efficient approximation. The
key difference from the standard Weitz algorithm is that we approximate a carefully designed
edge-deletion ratio instead of the marginal probability of a vertex’s spin, ensuring our algorithm
does not require SSM.

Furthermore, by establishing local dependence of coefficients (LDC), we indeed prove a
novel form of SSM for these edge-deletion ratios, which, in turn, implies the standard SSM
for the random cluster model. This is the first SSM result for the random cluster model on
general graphs, beyond lattices. We prove LDC using a new division relation, and remarkably,
such relations hold quite universally. As a result, we establish LDC for a variety of models.
Combined with existing zero-freeness results for these models, we derive new SSM results for
them. Our work suggests that both Weitz-type FPTASes and SSM can be derived from zero-
freeness, while zero-freeness alone suffices for Weitz-type FPTASes, SSM additionally requires
LDC, a combinatorial property independent of zero-freeness.
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1 Introduction

A fully polynomial-time approximation scheme (FPTAS) is a family of algorithms {Aε}, where Aε is
a multiplicative (1±ε)-approximation algorithm with running time polynomial in 1/ε for each ε > 0.
For counting problems, a standard approach to designing FPTASes is based on complex zero-free
regions of the associated partition function. Once such a zero-free region is established, Barvinok’s
algorithm [Bar16] provides an FPTAS for approximating the partition function in a slightly smaller
region. Specifically, suppose the partition function Z has no zeros in a complex region that contains
a computationally tractable point. Then, possibly after a complex conformal mapping, the zero-
freeness property ensures that logZ can be well-approximated in a slightly smaller region by its
Taylor expansion series truncated at degree O(log n) where n is the instance size. More precisely,
the Taylor expansion series fk of logZ truncated at degree k gives an approximation of logZ within
additive error Cr−k for some positive constant C and r > 1. The coefficients of fk can be computed
via subgraph counting in time ∆O(k) [PR17] where ∆ is the maximum degree. Clearly, the running
time is polynomial on n when k = O(logn). This approach connects the long-standing study of
complex zeros of the partition function in statistical physics to algorithmic studies.

Another (and earlier) approach for devising FPTASes, originating in the work of Weitz [Wei06]
and independently in Bandyopadhyay and Gamarnik [BG08], relies on the correlation decay prop-
erty, or more precisely, strong spatial mixing (SSM). Roughly speaking, SSM asserts that correla-
tions between spins decay exponentially with distance. Weitz’s algorithm approximates the parti-
tion function defined on a graph G by expressing it as a telescoping product of certain marginal
probabilities. The key technical ingredient of Weitz’s algorithm is the self-avoiding walk (SAW)
tree, which reduces the computation of a marginal probability on the original graph G to that on the
SAW tree. However, the SAW tree may be exponentially large compared to the graph size n. The
SSM property guarantees that the marginal probability can be well approximated by truncating
the SAW tree at a depth of O(logn), making the evaluation efficient.

Both Barvinok’s algorithm and Weitz’s algorithm have been widely applied, especially to the
study of 2-spin systems, which are among the most fundamental and well-studied models in statis-
tical physics and counting problems. A 2-spin system is defined on a finite simple graph G = (V,E)
with parameters (β, γ, λ): two edge activities β, γ representing edge interactions, and a vertex
activity λ representing an external field. A partial configuration of this system refers to a map-
ping σ : Λ → {+,−} for some Λ ⊆ V which may be empty. When Λ = V , it is a configuration
and is assigned a weight w(σ) = βm+(σ)γm−(σ)λn+(σ), where m+(σ) and m−(σ) count (+,+) and
(−,−) edges respectively, and n+(σ) counts vertices with spin +. The associated partition func-
tion is ZG(β, γ, λ) =

∑
σ:V→{+,−}w(σ). Many natural combinatorial problems reduce to evaluating

ZG(β, γ, λ). For instance, the case (β = 0, γ = 1) corresponds to the hard-core model (indepen-
dence polynomial), while β = γ gives the celebrated Ising model. Depending on whether βγ > 1
or βγ < 1, the model is classified as ferromagnetic or antiferromagnetic, respectively.

Although FPTASes for 2-spin systems have been obtained via both Barvinok’s algorithm [PR19,
BCSV23, MB19, LSS19, PR20, GGHP22, PRS23, GLL20, SS21] and Weitz’s algorithm [ZLB11,
LLY12, LLY13, SST14], the applicability differs. While Barvinok’s algorithm covers broad regions
including ferromagnetic systems. Weitz’s algorithm is mainly effective for antiferromagnetic systems
where SSM holds. The SSM property crucially required by Weitz’s algorithm is often absent in
the ferromagnetic regime. Recent work [Reg23, SY24] established a connection between these
two frameworks by showing that zero-freeness implies SSM, provided zero-free results hold for
graphs with pinned vertices. As a consequence, some new SSM results have been proved to 2-
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spin systems [SY24], which makes Weitz’s algorithm can be applied. However, some of the most
celebrated zero-freeness results, such as the Lee–Yang theorem [YL52, LY52] for the ferromagnetic
Ising model, only hold for graphs without pinned vertices. Consequently, for the ferromagnetic Ising
model on graphs of bounded degree, although Barvinok’s algorithm yields an FPTAS throughout
the Lee–Yang zero-free region [LSS19], i.e., λ ∈ C and |λ| < 1 or |λ| > 1 symmetrically, Weitz’s
algorithm cannot be applied to the entire zero-free region due to the lack of SSM. So far, the best
known SSM results hold for regions much smaller than the Lee–Yang zero-free region [SY24, SS21],
namely the union of the open disk centered at 0 with radius β−∆ where ∆ is the degree bound
and a strip-shaped neighborhood of the real segment [0, 1

β∆−2 ((∆−2)β2−∆)
). In fact, it is known that

SSM does not hold throughout the entire zero-free region [Bas07, SST14]. For instance, for the
three-dimensional Ising model at low temperatures where the Lee–Yang theorem holds, it is known
that SSM does not hold [Bas07], although weak spatial mixing does.

So far, for 2-spin systems, the regions where Barvinok’s algorithm applies strictly contain and
are much larger than those accessible to Weitz’s algorithm. This raises a natural and interesting
question: Is Barvinok’s algorithm inherently more powerful than Weitz’s algorithm? In this paper,
we provide negative evidence for this question.

Our contributions

Theorem 1. We present a Weitz-type FPTAS for the ferromagnetic Ising model throughout the
entire Lee–Yang zero-free region, without requiring SSM.

Our algorithm is a Weitz-type algorithm for two reasons. First, it expresses the partition func-
tion as a telescoping product of certain ratios and the key is to approximate each ratio. Secondly,
in order to give a good approximation of the ratios, it uses the SAW tree and truncates it at log-
arithmic depth. However, crucial differences distinguish our algorithm from the standard Weitz
algorithm, ensuring that our algorithm does not rely on SSM. First, instead of approximating the

marginal probability Pv =
ZG,σ(v)=+

ZG
of a vertex v being assign spin +, we approximate a carefully

designed edge-deletion ratio Pe =
ZG−e

ZG
where G − e denotes the graph obtained from G by re-

moving an edge e. Second, since SSM is unavailable, we cannot argue that truncating the SAW
tree yields a good approximation. Inspired by Barvinok’s method, we show that each edge-deletion
ratio viewed as a function on λ can be well approximated by truncating its Taylor expansion series
at logarithmic degree, and the coefficients can be computed efficiently via recursion on the SAW
tree up to logarithmic depth.

The replacement of Pv by Pe is crucial for the above method to work. In fact, it is impossible
to show that Pv could be approximated by logarithmic-degree Taylor truncation, since this would
imply SSM throughout the Lee–Yang region contradicting known impossibility results [Bas07].
The reason is that, as shown in [SY24], the ratio Pv viewed as a function on λ and its SAW-tree
version P Tk

v truncated at depth k share the same first k coefficients, known as local dependence of
coefficients (LDC). Hence, if the Taylor expansion series fk truncated at degree k approximates Pv

well, i.e., |Pv − fk| ≥ Cr−k for some positive constants C and r > 1, then fk also approximates
P Tk
v well. Then, by a triangle inequality, one would have |Pv −P Tk

v | ≤ 2Crk, which is the standard
SSM. This argument further implies that if LDC can be established for edge-deletion ratios, then
together with zero-freeness, which guarantees good approximation by Taylor series of logarithmic
degree, we obtain a form of SSM for these ratios. In other words, zero-freeness plus LDC implies
SSM. In this paper, we further show that such a LDC property holds. Thus, we establish SSM for
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edge-deletion ratios1 across the entire zero-free region.

Theorem 2 (SSM for edge-deletion ratios ). Fix β > 1 and λ ∈ D. Then there exist constants C > 0
and r > 1 such that for every graph G = (V,E), for any edge e ∈ E and subsets A,B ⊆ E \ {e},
we have

|PG−A,e − PG−B,e| ≤ Cr− dG(e,A̸=B),

where PG,e denotes the edge-deletion ratio ZG−e/ZG and dG(e,A ̸= B) is the distance in G between
the edge e and the set of edges on which the boundary conditions differ.

Surprisingly, the choice of the edge-deletion ratio is not only crucial for a Weitz-type FPTAS
for the Ising model, but it also admits a probabilistic interpretation in the Ising related random
cluster model. It corresponds exactly to the marginal probability that an edge is included in the
random cluster model. Thus, our edge-deletion SSM implies standard SSM for the random cluster
model. This is the first SSM result for the random cluster model on general graphs, whereas all
previous results were confined to lattices.

The LDC property was first implicitly shown for the hard-core model [Reg23] via cluster ex-
pansion, and later formally introduced and generalized to 2-spin systems [SY24] using a Christof-
fel–Darboux type identity. In this paper, we extend this framework by proving that an explicit
identity is unnecessary: a more general division relation, established via a delicate one-to-one map-
ping, suffices. Quite remarkably, such relations hold quite universally. Consequently, we establish
LDC for diverse models, including the Potts model, the hypergraph independence polynomial, and
the Holant framework, even in regions where zero-freeness fails. Thus, LDC is revealed as a com-
binatorial property independent of zero-freeness. Together with known zero-freeness results for the
above models, we obtain new SSM results.

In summary, this paper suggests the following relationship between zero-freeness, SSM, Weitz-
type FPTASes, and LDC. Both Weitz-type FPTASes and SSM can be derived from zero-freeness,
but with different requirements:

• For Weitz-type FPTASes, zero-freeness alone suffices.

• For SSM, one additionally needs LDC, a combinatorial property independent of zero-freeness.

Organization

The paper is organized as follows. In Section 3, to derive the Weitz-type algorithm, we show that
the truncated series provides a good approximation of the edge-deletion ratio from zero-freeness
via complex-analytic tools, and then analyze the truncated series through the self-avoiding walk
tree and operations on formal power series. This yields the FPTAS. In Section 4, we introduce the
framework in which zero-freeness implies SSM via LDC, and establish the SSM property in terms of
edge activities for the ferromagnetic Ising model, using the Lee–Yang theorem and the divisibility
relation. This edge-based SSM property further implies the standard SSM of the corresponding
random-cluster model. In Section 5, we extend the divisibility relation to various models and derive
their SSM properties.

1We actually prove a more general form of SSM; see Theorem 13.
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2 Preliminaries

2.1 Ising model

For a graph G = (V,E), with edge activities β = (βe)e∈E and vertex activities λ = (λv)v∈V , the
weight of a configuration σ : V → {+,−} is given by

w(σ) =
∏

e∈m(σ)

βe
∏

v∈n(σ)

λv

where m(σ) = {e = (u, v) ∈ E | σu = σv} is the set of edges whose endpoints have the same spin,
and n(σ) = {v ∈ V | σv = +} is the set of vertices assigned spin +. The patition function of the
Ising model is defined by ZG(β,λ) =

∑
σ:V→{+,−}w(σ). The celebrated Lee–Yang theorem states

the zero-free region of the Ising model.

Theorem 3 (Lee–Yang theorem). Let G = (V,E) be a graph with parameters β ∈ [1,∞)E and
λ ∈ DV where D is the unit open disk in the complex plane. Then the partition function of Ising
model ZG(β,λ) ̸= 0.

A partial configuration of the Ising model is a mapping σ : Λ → {+,−} for some Λ ⊆ V , which
my be empty. The conditional partition function is defined as ZσΛ

G (β,λ) =
∑

σ:V→{+,−}
σ|Λ=σΛ

where σ|Λ

denotes the restriction of the configuration σ on Λ. Let u, v ∈ V , then define

ZσΛ,+
G,v (β,λ) =

∑
σ:V→{+,−}

σ|Λ=σΛ,σ(v)=+

w(σ), and ZσΛ,+,+
G,v,u (β,λ) =

∑
σ:V→{+,−}

σ|Λ=σΛ,σ(v)=σ(u)=+

w(σ).

Then the conditional marginal probability that v is pinned to + given the partial configuration σΛ
and the corresponding marginal ratio are defined as

P σΛ
G,v(β,λ) =

ZσΛ,+
G,v (β,λ)

ZσΛ
G (β,λ)

, and RσΛ
G,v(β,λ) =

ZσΛ,+
G,v (β,λ)

ZσΛ,−
G,v (β,λ)

.

2.2 Weitz’s tree reduction

In the seminal work of Weitz [Wei06], the self-avoiding walk (SAW) tree reduces the computation
of marginal probabilities for 2-spin models on general graphs to the corresponding computation on
trees. We do not repeat the construction of the SAW tree here, and refer readers to [Wei06] for
details. We only state the key property of the SAW tree. If the graph G = (V,E) has maximum
degree ∆, then the SAW tree TSAW(G, v) rooted at v ∈ V also has maximum degree ∆. Moreover,
the marginal probability and marginal ratio at v in G coincide with those at the root of TSAW(G, v)
(with some leaves possibly pinned).

Consider a rooted tree T = (V,E) with root r ∈ V . Suppose r has d children v1, . . . , vd.
Removing r yields d subtrees T1, . . . , Td, where Ti is rooted at vi. Let RTi,vi denote the marginal
ratio at vi in Ti (e.g., RTi,vi = Z+

Ti,vi
/Z−

Ti,vi
), and let RT,r be the marginal ratio at r in T . Then the

tree recursion expressing RT,r in terms of the RTi,vi is given by a multivariate map Fd : Ĉd → Ĉ:

RT,r = Fd(RT1,v1 , . . . , RTd,vd), Fd(x1, . . . , xd) = λ
d∏

i=1

βxi + 1

xi + γ
,
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where Ĉ = C ∪ {∞} is the extended complex plane, β, γ are the edge-interaction parameters, and
λ is the external field. For the ferromagnetic Ising model, we have β = γ > 1. If the root vi of
Ti is pinned to + or −, then we set RTi,vi = ∞ or 0, and the term (βRTi,vi + 1)/(RTi,vi + γ) is
interpreted as β or 1/γ.

Weitz’s algorithm [Wei06] approximates the partition function of the 2-spin system on a graph
G by a telescoping product of marginal probabilities. Then the SAW tree reduction reduces the
problem to approximating marginal probabilities on trees. The strong spatial mixing property on
trees guarantees that the marginal probability at the root can be approximated by truncating the
tree at logarithmic depth. The standard strong spatial mixing of the Ising model is given below.

Definition 4 (Strong spatial mixing). Fix parameters β, λ and a family of graphs G. The Ising
model defined on G with parameters (β, λ) is said to satisfy strong spatial mixing with exponential
rate r > 1 if there exists a constant C such that for any G = (V,E) ∈ G, any vertices v ∈ V , any
partial configuration σΛ1 and τΛ2, we have∣∣∣P σΛ1

G,v (β, λ)− P
τΛ2
G,v (β, λ)

∣∣∣ ≤ Cr−dG(v,σΛ1
̸=τΛ2

)

where σΛ1 ̸= τΛ2 denotes the set (Λ1\Λ2) ∪ (Λ2\Λ1) ∪ {v ∈ Λ1 ∩ Λ2 : σΛ1(v) ̸= τΛ2(v)}, i.e., the set
of vertices where σΛ1 and τΛ2 differ. The term dG(v, σΛ1 ̸= τΛ2) denotes the shortest path distance
from v to any vertex in σΛ1 ̸= τΛ2.

However, the best known SSM results for the ferromagnetic Ising model with β > 1 apply only
to graphs of bounded degree ∆, and they hold in a region much smaller than the Lee–Yang zero-
free region [SY24, SS21], namely the union of the open disk centered at 0 with radius β−∆ and a

neighborhood of the real segment
[
0,

1

β∆−2
(
(∆− 2)β2 −∆

)).
Consequently, Weitz’s algorithm cannot be applied to obtain an FPTAS for the ferromagnetic

Ising model over the entire Lee–Yang zero-free region. Nonetheless, by analyzing the edge deletion
ratios and leveraging zero-freeness via truncated Taylor expansions together with the SAW-tree
reduction, we establish a Weitz-type FPTAS that works throughout the full Lee–Yang zero-free
region.

2.3 Complex analysis tools and truncated power series

A region is a connected open set in C. In particular, an open disk with one interior point removed
is also a region. We denote by Dρ(z0) the open disk centered at z0 with radius ρ, and by ∂Dρ(z0)
its boundary circle. If z0 = 0, we simply write Dρ and ∂Dρ; if ρ = 1, we omit the subscript ρ. Let
f(z) =

∑
k≥0 akz

k be a (formal) power series, and write its truncation to degree m as

f [m] :=
m∑
k=0

akz
k (= f mod zm+1).

The following lemma is a standard result of complex analysis textbook, derived from Cauchy’s
integral formula.

Lemma 5. Let f(z) be analytic in a neighborhood of z = 0, and suppose |f(z)| ≤ M on the circle
∂Dρ for some ρ > 0. Then for any z ∈ Dρ, we have

|f(z)− f [n](z)| ≤ M

ρ(r − 1)rn
, where r = ρ/|λ| > 1.
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Applying Lemma 5 requires a uniform bound on a circle for a family of analytic functions. In
[Reg23], Regts employed Montel’s theorem to obtain such bounds, leading to the following result.

Lemma 6. Let U be a region, and let F be a family of holomorphic functions f : U → C such that
f(U) ⊆ C\{0, 1} for all f ∈ F . If there exist a point z0 ∈ U and a constant C such that |f(z0)| ≤ C
for all f ∈ F , then for any compact subset S ⊆ U, there exists another constant C ′ such that for
all f ∈ F and all z ∈ S, we have |f(z)| ≤ C ′.

Next, assume the first m+1 coefficients of f and g are given. We measure running time in terms
of arithmetic operations over C. Using FFT-based polynomial multiplication (see [VZGG03]), the
following bounds hold:

1. Scalar multiplication: (kf)[m] = k f [m] in O(m) time.

2. Addition: (f + g)[m] = f [m] + g[m] in O(m) time.

3. Multiplication: (fg)[m] in O(m logm) time (via FFT).

4. Division: if g(0) ̸= 0, then (f/g)[m] in O(m logm) time by Newton iteration.

In particular, each of the above truncated operations can be done in O(m logm) time with FFT.

3 Weitz-type algorithm for the ferromagnetic Ising model

Our approach is a telescoping algorithm based on edge deletion. For a graph G = (V,E) with
parameters (β, λ), we order the edges in E as e1, e2, . . . , em, denote Gi = (V,Ei) where Ei =
{e1, e2, . . . , ei} for 1 ≤ i ≤ m and G0 = (V,∅). Then we have

1

ZG(λ)
=

m∏
i=1

ZGi−1(λ)

ZGi(λ)

1

ZG0(λ)
= (1 + λ)−|V |

m∏
i=1

PGi,ei(λ),

where we define the edge–deletion ratio PG,e = ZG−e/ZG. Thus, approximating ZG(λ) within a
multiplicative factor of ε reduces to approximating each ratio PGi,ei(λ) within a multiplicative error
of at most ε/(4m), for all 1 ≤ i ≤ m. This is achieved by computing the truncated Taylor series of
PGi,ei(λ) at λ = 0 up to degree k = O(log(m/ε)), and then evaluating it at λ.

3.1 Truncated series is a good approximation

To show the truncation series gives a good approximation via Lemma 5, we apply Lemma 6 to
obtain a uniform bound of PG,e(λ) for all graph G and edge e ∈ G. This requires that PG,e(λ)
avoid 0 and 1 for all graph G and edge e ∈ G.

Lemma 7. Let G = (V,E) be a graph. For edge activity β > 1 and external field λ ∈ D, the
edge-deletion ratio PG,e(β, λ) omits the values 0 and 1.

Proof. See Lemma 22 as a special case. The result follows entirely from the Lee–Yang zero-free
region.

Then a uniform bound of PG,e(λ) for all graph G and edge e ∈ G follows from Lemma 6. Where
the upper bound (for a circle) is used to establish the additive error in Lemma 5, and the lower
bound (for a single point) is used to turn the additive error into a multiplicative error.
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Lemma 8. Fix β > 1 and S ⊆ D be a compact set. There exists a constants M, b > 0 such that
b ≤ |PG,e(λ)| ≤ M for all graph G, edge e ∈ G and λ ∈ S.

Proof. Fix β > 1 and a compact S ⊆ D. Let F = {PG,e(z) : G a graph, e ∈ E(G)}. By Lemma 7,
every f ∈ F omits {0, 1} on D, and f(0) = 1/β is uniformly bounded. Hence, by Lemma 6, there
exists M > 0 such that |PG,e(z)| ≤ M for all z ∈ S, all G, and all e.

For the lower bound, apply the same argument to F−1 = {1/PG,e(z)}. Each g ∈ F−1 also omits
{0, 1} and g(0) = β is uniformly bounded, so there exists M ′ > 0 with |1/PG,e(z)| ≤ M ′ for all
z ∈ S. Setting b := 1/M ′ yields b ≤ |PG,e(z)| ≤ M for all z ∈ S, as claimed.

Lemma 9. Fix β > 1 and λ ∈ D. Then there exists k = O(log(m/ε)) such that for every graph

G = (V,E) with m = |E| and every edge e ∈ E, the truncated series P
[k]
G,e evaluated at λ, satisfies

the relative bound ∣∣PG,e(λ)− P
[k]
G,e(λ)

∣∣∣∣PG,e(λ)
∣∣ ≤ ε

4m
.

Proof. Pick ρ = 1+|λ|
2 so that λ ∈ Dρ. By Lemma 8, there exists M > 0 such that |PG,e(z)| ≤ M

for all z ∈ ∂Dρ and all G, e. Applying Lemma 5 to PG,e yields∣∣PG,e(λ)− P
[k]
G,e(λ)

∣∣ ≤ C r−k, r = ρ/|λ| > 1,

for some constant C independent of G, e. Moreover, Lemma 8 with S = {λ} provides a uniform
lower bound b > 0 such that |PG,e(λ)| ≥ b for all G, e. Therefore,∣∣PG,e(λ)− P

[k]
G,e(λ)

∣∣∣∣PG,e(λ)
∣∣ ≤ C

b
r−k.

Choosing k =

⌈
log
(
(4mC)/(εb)

)
log r

⌉
guarantees the desired bound. Since C, b and r are independent of

G, e, this choice satisfies k = O(log(m/ε)) uniformly over all G, e.

Weitz’s algorithm computes ZG as a telescoping product of conditional marginal probabilities.
We choose to truncate the edge-deletion ratios rather than the marginals for the following reasons.
First, if the truncated series yields a uniformly exponential error bound for the marginal probabili-
ties, as in [SY24], this would imply strong spatial mixing. However, the best-known SSM region for
the ferromagnetic Ising model (even on bounded-degree graphs) is much smaller than the Lee–Yang
zero-free region, and SSM is known not to hold throughout that region [Bas07, SST14]. Second,
with pinning, the zero-free region for the partition function is strictly smaller than the Lee–Yang
zero-free region, so the marginal probabilities (being ratios involving pinned partition functions)
need not be well defined or holomorphic on the entire Lee–Yang zero-free region.
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3.2 Computing the truncated series via Weitz’s tree reduction

For simplicity, we omit the parameters (β, λ) in the following. Suppose ei = (u, v). By the definition
of the Ising model, we have

PGi,ei =
ZGi−1

ZGi

=
Z+,+
Gi−1,u,v

+ Z−,−
Gi−1,u,v

+ Z−,+
Gi−1,u,v

+ Z+,−
Gi−1,u,v

Z+,+
Gi,u,v

+ Z−,−
Gi,u,v

+ Z−,+
Gi,u,v

+ Z+,−
Gi,u,v

=

1

β
Z+,+
Gi,u,v

+
1

β
Z−,−
Gi,u,v

+ Z−,+
Gi,u,v

+ Z+,−
Gi,u,v

Z+,+
Gi,u,v

+ Z−,−
Gi,u,v

+ Z−,+
Gi,u,v

+ Z+,−
Gi,u,v

=1 +

(
1− 1

β

)
Z+,+
Gi,u,v

+ Z−,−
Gi,u,v

Z+,+
Gi,u,v

+ Z−,−
Gi,u,v

+ Z−,+
Gi,u,v

+ Z+,−
Gi,u,v

=1 +

(
1− 1

β

)
Ru+

Gi,v
Rv−

Gi,u
+ 1

Ru+

Gi,v
Rv−

Gi,u
+ 1 +Ru−

Gi,v
+Rv−

Gi,u

.

The second line holds because if u and v have the same spin, the only extra contribution in ZGi

(compared with ZGi−1) is the edge ei = (u, v), which contributes a factor of β. The last line follows

by dividing numerator and denominator by Z−,−
Gi,u,v

and substituting the ratio identities

Z+,+
Gi,u,v

Z−,−
Gi,u,v

=
Z+,+
Gi,u,v

Z+,−
Gi,u,v

·
Z+,−
Gi,u,v

Z−,−
Gi,u,v

= Ru+

Gi,vR
v−
Gi,u,

Z+,−
Gi,u,v

Z−,−
Gi,u,v

= Rv−
Gi,u,

Z−,+
Gi,u,v

Z−,−
Gi,u,v

= Ru−
Gi,v.

To calculate PGi,ei(λ)
[k], it suffices to calculate the ratios Ru+

Gi,v
(λ)[k], Rv−

Gi,u
(λ)[k] and Rv−

Gi,u
(λ)[k].

This can be done by the tree recursion on the self-avoiding walk tree TSAW(Gu+

i , v), TSAW(Gv−
i , u)

and TSAW(Gu−
i , v) respectively. Recall the tree recursion formula

RT,r(λ) = λ
d∏

i=1

β RTi,vi(λ) + 1

RTi,vi(λ) + β
.

To compute RT,r(λ)
[k], it suffices to compute the truncated series of

∏d
i=1

β RTi,vi
(λ)+1

RTi,vi
(λ)+β up to degree

k − 1; hence, for each child vi we require RTi,vi(λ)
[k−1]. Therefore RT,r(λ)

[k] can be obtained by
traversing the truncated self-avoiding walk tree to depth k and, for every node at depth i ∈ [0, k],
computing the truncated series of its ratio to degree k − i. Suppose T has maximum degree ∆,
at each node, multiplying at most ∆ series and performing one division with FFT-based series
arithmetic costs O(∆ k log k). The truncated SAW tree to depth k has O(∆k) nodes. Hence the
total running time is O(∆k ·∆ k log k) = O(∆k+1k log k).

If G has maximum degree ∆, then the self-avoiding walk tree TSAW(Gu+

i , v), TSAW(Gv−
i , u) and

TSAW(Gu−
i , v) also have maximum degree ∆. Thus, the time complexity for computing PGi,ei(λ)

[k]

is O(k log k∆k+1).

3.3 Approximation and running time

Theorem 10. Fix β > 1 and λ ∈ D. There exists a deterministic algorithm that, given a graph
G = (V,E) with m = |E| and maximum degree ∆, and an accuracy parameter ε ∈ (0, 1), computes
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an approximation Ẑ in time
(
m
ε

)O(log∆)
such that∣∣∣∣∣ZG(β, λ)− Ẑ

ZG(β, λ)

∣∣∣∣∣ ≤ ε.

Proof. Choose k = O(log(m/ε)) as in Lemma 9 and set Ẑ = (1+ λ)|V |/
∏m

i=1 P
[k]
Gi,ei

(λ). For each i,

let δi =
PGi,ei

(λ)

P
[k]
Gi,ei

(λ)
− 1, thus |δi| =

∣∣∣∣P [k]
Gi,ei

(λ)/PGi,ei
(λ)−1

P
[k]
Gi,ei

(λ)/PGi,ei
(λ)

∣∣∣∣ ≤ ε
4m

1− ε
4m

≤ ε
2m . Then we have

∣∣∣∣∣ZG(β, λ)− Ẑ

ZG(β, λ)

∣∣∣∣∣ =
∣∣∣∣∣1−

m∏
i=1

(1 + δi)

∣∣∣∣∣ ≤ exp

(
m∑
i=1

|δi|

)
− 1 ≤ eε/2 − 1 ≤ ε.

By the SAW-tree recursion and FFT-based truncated series arithmetic, each P
[k]
Gi,ei

(λ) is computable

in O(k log k∆k+1) time; over all m edges the total time is

O(mk log k∆k+1) =
(m
ε

)O(log∆)
.

Our algorithm shows that SSM is unnecessary for a Weitz-type FPTAS, as we do not rely
on SSM for the marginal probability of a vertex being assigned a particular spin. Instead, it is
crucial for our algorithm to replace marginal probabilities of vertices by edge-deletion ratios, which
eliminates the need for SSM. In the next section, we show that, even though the standard notion of
SSM does not hold, by further proving the local dependence of coefficients (LDC), a combinatorial
property independent of zero-freeness, we can indeed establish a new form of SSM for edge deletion
ratios. Thus, zero-freeness alone gives Weitz-type FPTASes, while zero-freeness plus LDC gives
new forms of SSM.

4 SSM for Generalized Edge Ratios

SSM typically refers to the property that differences in conditional marginal probabilities at a given
vertex exhibit exponential decay with respect to the distance of the disagreement condition in the
Gibbs distribution.

If we ignore the probabilistic meaning of PG,v, arithmetically, it is just a ratio of two partition
functions conditioning on different partial configurations. Such a ratio can be extended to a much
more general setting. For a partition function ZG(β,λ) viewed as a multivariate function on edge
activities (βe)e∈E and vertex external fields (λv)v∈V , and a partial evaluationm(V ′, E′) : (βe)e∈E′ →
[1,∞), (λv)v∈V ′ → D (i.e., substituting specific values for variables (βe)e∈E′ and (λv)v∈V ′), we
consider the function

Z
m(V ′,E′)
G ((βe)e∈E\E′ , (λv)v∈V \V ′)

where the values of (λv)v∈V ′ and (βe)e∈E′ are assigned by m(V ′, E′). When context is clear, we

may omit the subscript e ∈ E\E′ and v ∈ V \V ′ in Z
m(V ′,E′)
G . Some particular partial evaluations

have special meanings. For example, the assignment m(u) : λu → 0 that assigns the external field

λu of a particular vertex u ∈ V to 0 gives the function Z
m(u)
G = Z−

G,u which is the partition function
of the Ising model on the graph G with a pinned vertex u to the − spin. Also, the assignment
m(e) : βe → 1 that assigns the edge activity βe of a particular edge e ∈ E to 1 gives the function

9



Z
m(e)
G = ZG−e which is the partition function of the Ising model on the graph G− e, i.e., the graph

obtained from G by removing the edge e.
In this paper, we focus on the partial evaluation m(∅, E′) that only assigns values to edge

activities for edges in E′. For simplicity, we write m(∅, E′) as m(E′). Then, as an extension of the

marginal probability PG,v, we can define the ratio PG,m(E′)(β,λ) = Z
m(E′)
G (β,λ)/ZG(β,λ) for any

partial evaluation m(E′). Moreover, we can define the ratio conditioning on a pre-specified partial

evaluation m1(E1) by P
m1(E1)
G,m(E′)(β,λ) = Z

m1(E1),m(E′)
G (β,λ)/Z

m1(E1)
G (β,λ) for partial evaluation

m(E′) satisfying E′ ∩ E1 = ∅. If context is clear, we may omit the arguments (β,λ) and the

specification of edge sets E1 and E′, and write P
m1(E1)
G,m(E′)(β,λ) as P

m1
G,m for simplicity.

With these notations in hand, we are able to define the generalized form of edge-type SSM.

Definition 11 (Generalized edge-SSM). Let G be a family of graphs with parameters (β,λ) and
C2 ≥ C1 ≥ 0 be constants. The Ising model defined on G is said to satisfy generalized edge-type
strong spatial mixing (GE-SSM) with exponential rate r > 1 if there exists a constant C such that

for any G = (V,E) ∈ G, any e ∈ E with m = {βe → β′
e} where β′

e
βe

∈ [C1, C2] and any partial
evaluation m1,m2 defined on A,B ⊆ E\{v} respectively, then∣∣∣Pm1

G,m − Pm2
G,m

∣∣∣ ≤ Cr−dG(e,m1 ̸=m2).

Here, we denote m1 ̸= m2 = (A\B) ∪ (B\A) ∪ {f ∈ A ∩ B : m1(f) ̸= m2(f)}, which is the set
of edges where m1 and m2 differ. The quantity dG(e,m1 ̸= m2) is the shortest distance from any
endpoint of e to any endpoint of an edge in m1 ̸= m2.

If we restrict the partial evaluations m(E′) and m1(E1) to assigning edge activities only to the

value 1, then P
m1(E1)
G,m(E′) =

Z
m(E′),m1(E1)
G

Z
m1(E1)
G

=
ZG−E′−E1
ZG−E1

. We define PG,e =
ZG−e

ZG
. Then, as a special form

of GE-SSM, we define the following edge-deletion form of SSM.

Definition 12 (Edge-deletion SSM). Let G be a family of graphs with parameters (β,λ). The Ising
model defined on G is said to satisfy edge-deletion SSM with exponential rate r > 1 if there exists
a constant C such that for any G = (V,E) ∈ G, edge e ∈ E, sets of edge A,B ⊆ E\e, then

|PG−A,e − PG−B,e| ≤ Cr−dG(e,A̸=B).

Indeed, we establish the GE-SSM result for the Ising model, as stated below.

Theorem 13. Fix constants δ ∈ (0, 1) and C2 ≥ C1 ≥ 0. Then there exist constants C > 0 and
r > 1 such that for all graph G = (V,E) with parameters β ∈ [1,∞)E and λ ∈ (1− δ)DV , and for
any edge e ∈ E and sets A,B ⊆ E\{e}, the following holds. Define the partial evaluation:

m = {βe → β′
e}, m1 = {βf → βA

f }f∈A, m2 = {βf → βB
f }f∈B

where β′
e ∈ [1,∞), βA

f ∈ [1,∞] for all f ∈ A, βB
f ∈ [1,∞] for all f ∈ B and β′

e
βe

∈ [C1, C2], we have∣∣∣Pm1
G,m(β,λ)− Pm2

G,m(β,λ)
∣∣∣ ≤ Cr−dG(e,m1 ̸=m2).

Remark 14. This theorem differs slightly from the definition of GE-SSM, as we allow the condi-
tional partial evaluations to take the value ∞. However, this can be well-defined by taking limits of
the corresponding ratios. Indeed, Lee–Yang theorem ensure the ratios Pm1

G,m(β,λ) and Pm2
G,m(β,λ)
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is well-defined when for βA
f ∈ [1,∞) for f ∈ A and βB

f ∈ [1,∞) for f ∈ B. Once the theorem is

established in this setting, one can take the appropriate limits to extend its validity even when βA
f

or βB
f approaches ∞.

If set β′
e = 1, then β′

e
βe

∈ [0, 1] always holds. As a corollary, the edge-deletion SSM holds.

Corollary 15. Fix δ ∈ (0, 1). For any graph G = (V,E) with β ∈ [1,∞)E and λ ∈ (1− δ)DV , the
edge-deletion SSM holds.

Such an edge-type SSM does not have an explicit probabilistic meaning in the Ising model.
However, through the relationship between the Ising model and the random cluster model, we
found that it can be interpreted as the standard SSM in the random cluster model.

4.1 LDC framework

For two complex functions f(z) and g(z) analytic near z0, we denote by (z − z0)
k | f(z)− g(z) the

property that their Taylor series expansions,

f(z) =
∞∑
i=0

ai(z − z0)
i and g(z) =

∞∑
i=0

bi(z − z0)
i

satisfy ai = bi for 0 ≤ i ≤ k − 1.
The following lemma is a key tool in establishing SSM from zero-freeness, as used in [Reg23,

SY24]. It also follows as a consequence of Lemma 5.

Lemma 16. Let f(z) and g(z) be two analytic functions on some complex neighborhood U of z0.
Suppose that the (z − z0)

n | f(z) − g(z). Also, suppose that there exists an M > 0 such that both
|P (z)| ≤ M and |Q(z)| ≤ M on some circle ∂Dρ(z0) ⊆ U (ρ > 0). Then for every z ∈ Dρ(z0), we
have

|f(z)− g(z)| ≤ 2M

ρ(r − 1)rn−1
, with r =

ρ

|z − z0|
.

In [SY24], Shao and Ye introduce the concept of local dependence of coefficients (LDC), which
is implicitly used in [Reg23]. To establish edge-type SSM for the Ising model, we introduce LDC
below.

Definition 17 (LDC). We say that the Ising model satisfies LDC if for all graphs G = (V,E)
with parameters β ∈ [1,∞)E and λ ∈ D, the following holds. For an edge e ∈ E and subsets
A,B ⊆ E\{e}, define the partial evaluations:

m = {βe → β′
e}, m1 = {βf → βA

f }f∈A, m2 = {βf → βB
f }f∈B

where the modified parameters satisfy β′
e ∈ [1,∞), βA

f ∈ [1,∞) for f ∈ A and βB
f ∈ [1,∞) for

f ∈ B. It holds that
λdG(e,m1 ̸=m2)+1 | Pm1

G,m(β, λ)− Pm2
G,m(β, λ).

To address the non-uniform external field, we prove a slightly modified form of LDC. Once we
have the LDC and a uniform bound, we can establish the edge SSM.
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Definition 18 (LDC). We say that the Ising model satisfies LDC if for all graphs G = (V,E)
with parameters β ∈ [1,∞)E and λ ∈ DV , the following holds. For an edge e ∈ E and subsets
A,B ⊆ E\{e}, define the partial evaluations:

m = {βe → β′
e}, m1 = {βf → βA

f }f∈A, m2 = {βf → βB
f }f∈B

where the modified parameters satisfy β′
e ∈ [1,∞), βA

f ∈ [1,∞) for f ∈ A and βB
f ∈ [1,∞) for

f ∈ B. It holds that
zdG(e,m1 ̸=m2)+1 | Pm1

G,m(β,λz)− Pm2
G,m(β,λz).

4.2 Divisibility Relation via a Combinatorial Bijection

We establish a divisibility relation that implies the LDC.

Lemma 19. Let G = (V,E) be a graph with parameters (β,λ) where β ∈ [1,∞)E and λ ∈ DV ,
Let A,B ⊆ E be two disjoint edge sets, define the partial evaluations:

m1 = {βf → βA
f }f∈A, m2 = {βf → βB

f }f∈B

where the modified parameters satisfy βA
f ∈ [1,∞) for f ∈ A and βB

f ∈ [1,∞) for f ∈ B. Then

zdG(A,B)+1 | ZG(β,λz)Z
m1,m2

G (β,λz)− Zm1
G (β,λz)Zm2

G (β,λz)

where dG(A,B) = mine1∈A,e2∈B dG(e1, e2).

Proof. For simplicity, we omit (β,λz) in the notation. Let S = V → {+,−}, then

ZGZ
m1,m2

G − Zm1
G Zm2

G

=
∑
σ∈S

wG(σ)
∑
σ∈S

wm1,m2

G (σ)−
∑
σ∈S

wm1
G (σ)

∑
σ∈S

wm2
G (σ)

=
∑

(σ1,σ2)∈
(S×S)

wG(σ1)w
m1,m2

G (σ2)−
∑

(σ3,σ4)∈
(S×S)

wm1
G (σ3)w

m2
G (σ4)

Let R = {(σ, τ) ∈ S × S : n+(σ) + n+(τ) < d(A,B) + 1}, where n+(σ) is the number of
vertices with + spin in σ. We will show that there exists an automorphism f on R such that if
(σ3, σ4) = f(σ1, σ2), then wG(σ1)w

m1,m2

G (σ2) = wm1
G (σ3)w

m2
G (σ4).

Let (σ1, σ2) ∈ R, consider the subgraph H = (V,E+(σ1|σ2)), where σ1 | σ2 denotes the logical
OR, interpreting + as true. Since n+(σ1) + n+(σ2) < d(A,B) + 1, there are no paths connecting
any edge between A and B in H. Let S be the minimal vertex set containing all connected
components of H that intersect with G1 and T = V \S. Swap the part at T of σ1 and σ2, write it
as (σ3, σ4) = (σ1|S ∪ σ2|T , σ2|S ∪ σ1|T ). Obviously, (σ3, σ4) ∈ R and the process is reversible (note
σ3|σ4 = σ1|σ2, which is unchanged in the process), thus f is an automorphism.

Since there are no (+,+) edges between S and T for σ1|σ2 = σ3|σ4, it follows that there are no
(+,+) edges between S and T for σ1, σ2, σ3 and σ4. For an edge e = (u, v) ∈ E between S and T ,
define s(e, σ) = 1[e ∈ E−(σ)]. Recalling that e cannot be a (+,+) edge in any σi(i = 1, 2, 3, 4), we
obtain s(e, σ) = 1−1[σ(u) = +]−1[σ(v) = +]. Moreover, note that 1[σ1(u) = +]+1[σ2(u) = +] =
1[σ3(u) = +]+1[σ2(u) = +] and similarly for v. It follows that s(e, σ1)+s(e, σ2) = s(e, σ3)+s(e, σ4).
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Let C = {(u, v) ∈ E | u ∈ S, v ∈ T} be the set of cut edges between S and T . By the definition
of w(·), we have

wG(σ1)w
m1,m2

G (σ2)

=
∏
e∈C

βs(e,σ1)
e wG[S](σ1|S)wG[T ](σ1|T )

∏
e∈C

βs(e,σ2)
e wm1

G[S](σ2|S)w
m2

G[T ](σ2|T )

=
∏
e∈C

βs(e,σ1)+s(e,σ2)
e wm1

G[S](σ2|S)wG[T ](σ1|T )wG[S](σ1|S)wm2

G[T ](σ2|T )

=
∏
e∈C

βs(e,σ3)+s(e,σ4)
e wm1

G[S](σ3|S)wG[T ](σ3|T )wG[S](σ4|S)wm2

G[T ](σ4|T )

=
∏
e∈C

βs(e,σ3)
e wm1

G[S](σ3|S)wG[T ](σ3|T )
∏
e∈C

βs(e,σ4)
e wG[S](σ4|S)wm2

G[T ](σ4|T )

=wm1
G (σ3)w

m2
G (σ4).

Thus, the proof is complete.

4.3 Generalized edge-SSM

4.3.1 Edge-type LDC

Lemma 20. Let G = (V,E) be a graph with parameters β ∈ [1,∞)E and λ ∈ DV . Let e ∈ E and
A ⊆ E\{e}, m = {βe → β′

e} with β′
e ≥ 1 and m1 = {βf → β′

f | f ∈ A} where β′
f ≥ 1 for all f ∈ A.

Then the Taylor series of PG,m(β,λz) and Pm1
G,m(β,λz) near z = 0 satisfy

zdG(e,A)+1 | PG,m(β,λz)− Pm1
G,m(β,λz)

Proof.

PG,m(β,λz)− Pm1
G,m(β,λz) =

Zm
G (β,λz)

ZG(β,λz)
−

Zm,m1

G (β,λz)

Zm1
G (β,λz)

=
Zm
G (β,λz)Zm1

G (β,λz)− Zm,m1

G (β,λz)ZG(β,λz)

ZG(β,λz)Z
m1
G (β,λz)

.

Clearly by Lee–Yang theorem, 1
ZG(β,λz)Z

m1
G (β,λz)

is analytic near z = 0. Combining this with

Lemma 19, we have
zdG(e,A)+1 | PG,m(β,λz)− Pm1

G,m(β,λz).

Lemma 21 (LDC). Let G = (V,E) be a graph with parameters β ∈ [1,∞)E and λ ∈ DV . Let
e ∈ E and A,B ⊆ E\{e}, and partial evaluations

m = {βe → β′
e}, m1 = {βf → βA

f }f∈A, m2 = {βf → βB
f }f∈B

where β′
e ∈ [1,∞), βA

f ∈ [1,∞) for f ∈ A and βB
f ∈ [1,∞) for f ∈ B. Then the Taylor series of

Pm1
G,m(β,λz) and Pm2

G,m(β,λz) near z = 0 satisfy

zdG(e,m1 ̸=m2)+1 | Pm1
G,m(β,λz)− Pm2

G,m(β,λz).
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Proof. Define β′ as β after applying by m1 ∩m2, let m
′
1 = m1\m2 and m′

2 = m2\m1, then

Pm1
G,m(β,λz)− Pm2

G,m(β,λz) =P
m′

1
G,m(β′,λz)− P

m′
2

G,m(β′,λz)

=[P
m′

1
G,m(β′,λz)− PG,m(β′,λz)] + [PG,m(β′,λz)− P

m′
2

G,m(β′,λz)].

By the previous lemma, we have zdG(e,m′
1)+1 | Pm′

1
G,m(β′,λz) − PG,m(β′,λz) and zdG(e,m′

2)+1 |
PG,m(β′,λz)−P

m′
2

G,m(β′,λz). Since dG(e,m1 ̸= m2) = min{dG(e,m′
1), dG(e,m

′
2)}, we are done.

4.3.2 Uniform bound of edge-type ratio

We are ready to prove the edge type ratio avoid 0 and 1.

Lemma 22. Let G = (V,E) be a graph, with parameters β ∈ [1,∞)E and λ ∈ DV , edge e ∈ E, if
β′
e ≥ 1 and β′

e ̸= βe, then PG,{βe→β′
e}(β,λ) avoid 0 and 1.

Proof. Since β′
e ≥ 1, by Lee–Yang theorem, it is trivial that PG,{βe→β′

e}(β,λ) ̸= 0. We prove the
ratio avoids 1.

Let e = (u, v), we have

ZG(β,λ)− Z
{βe→β′

e}
G (β,λ)

=Z+,+
G,u,v(β,λ) + Z−,−

G,u,v(β,λ) + Z+,−
G,u,v(β,λ) + Z−,+

G,u,v(β,λ)

− β′
e

βe
Z+,+
G,u,v(β,λ)−

β′
e

βe
Z−,−
G,u,v(β,λ)− Z+,−

G,u,v(β,λ)− Z−,+
G,u,v(β,λ)

=
βe − β′

e

βe
(Z+,+

G,u,v(β,λ) + Z−,−
G,u,v(β,λ)).

Merge u, v into a single vertex w we get graph G′ = (V ′, E′), set λw = λuλv, if parallel edges
exist (i.e. (u, x) ∈ E, (v, x) ∈ E for some x ∈ V ), we merge them into a single edge and set
β(w,x) = β(u,x)β(v,x). Write the partition function of G′ with new parameters as ZG′(β′,λ′).

One can see ZG′(β′,λ′) = Z+
G′,w(β

′,λ′) + Z−
G′,w(β

′,λ′) = (Z+,+
G,u,v(β,λ) + Z−,−

G,u,v(β,λ))/βe.

Since λ′ ∈ DV ′
and β′ ∈ [1,∞)E

′
, by Lee–Yang theorem, ZG(β,λ) − Z

{βe→β′
e}

G (β,λ) = (βe −
β′
e)ZG′(β′,λ′) ̸= 0. Thus the ratio avoids 1.

Lemma 23 (uniform bound). Fix constant number δ ∈ (0, 1) and C2 ≥ C1 ≥ 0. Let S be a
compact set of 1

1−δD. Then, there exists a constant C > 0 such that for any graph G = (V,E) with

parameters β ∈ [1,∞)E and λ ∈ (1− δ)DV , for any e ∈ E, any β′
e ≥ 1 with β′

e
βe

∈ [C1, C2], we have
|PG,{βe→β′

e}(β,λz)| ≤ C for all z ∈ S.

Proof. Consider the family of functions f(z) = PG,{βe→β′}(β,λz) where z is the variant. It’s trivial
when β′

e = βe, the ratio is exactly 1. So we only consider the family of ratio functions when β′
e ̸= βe.

By Lemma 22, PG,{βe→β′
e}(β,λz) avoid 0 and 1 for all z ∈ 1

1−δD. Since PG,{βe→β′
e}(β,λ · 0) = β′

e
βe

∈
[C1, C2] is bounded, by Lemma 6, the upper bound is got.

Now we are ready to prove edge-type SSM of the Ising model and then immediately deduce the
SSM of the random cluster model.
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Proof of Theorem 13. By Lemma 21, we have zdG(e,m1 ̸=m2)+1 | Pm1
G,m(β,λz) − Pm2

G,m(β,λz). Let

S = (1 + δ)∂D, which is a compact subset of 1
1−δD. By Lemma 23 we know that the ratio is

uniformly bounded for z ∈ S. Choosing z = 1 ∈ (1 + δ)D, we apply Lemma 16 to conclude the
proof.

4.4 SSM for random cluster model

Let G = (V,E) be a graph, p ∈ [0, 1]E , λ ∈ [0, 1]V be parameters. The weight of a configuration
S ⊆ E in the (weighted) random cluster model is defined by:

wRC
G,p,λ(S) =

∏
e∈S

pe
∏

e∈E\S

(1− pe)
∏

C∈κ(V,S)

1 +
∏
j∈C

λj

 ,

where κ(V, S) denotes the set of connected components of graph (V, S). The partition function of
the random cluster model is given by

ZRC
G (p,λ) =

∑
S⊆E

wRC
G,p,λ(S).

When λ = 1, the weighted random cluster model reduces to the standard random cluster model for
the Ising model without external field. The relationship between the Ising model with an external
field and the random cluster model is given in the following lemma.

Lemma 24 ([FGW23, Proposition 2.1]). Let G = (V,E) be a graph, and let β ∈ [1,+∞)E and
λ ∈ [0, 1]V be parameters. Then,

ZIsing
G (β,λ) =

(∏
e∈E

βe

)
ZRC
G (p,λ),

where p = 1− β−1 = (1− β−1
e )e∈E.

Remark 25. Expressing it as ZRC
G (p,λ) = ZIsing

G (β,λ)/
∏

e∈E βe, we observe that setting βe = ∞
is well-defined by taking the limit, which corresponds to setting pe = 1 in the random cluster model.

When p ∈ [0, 1]E and λ ∈ [0, 1]V , RC model induces a distribution µ(·) where µ(S) = w(S)/Z
for S ⊆ E. Denote the marginal probability on an edge e such that e is picked and unpicked
as P+

G,e(p,λ) = Z+
G,e/ZG and P−

G,e(p,λ) = Z−
G,e/ZG where Z+

G,e =
∑

S⊆E,e∈S w(S) and Z−
G,e =∑

S⊆E\ew(S) respectively. We also define the partition function conditioning on a pre-described
partial configuration σA (A ⊆ E, each edge in A is pinned to be in or out the configurations, we
use the notation + and − denoting in and out) denoted by

ZσA
G =

∑
S⊆E

S|A=σA

wRC
G,p,λ(S)

and then the conditional marginal probabilities e unpicked under condition σA are defined by

P σA
G,e =

ZσA,−
G,e

ZσA
G

.
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Definition 26 (SSM for the random cluster model). Let G be a family of graphs with parameters
(p,λ). The random cluster model defined on G is said to satisfy strong spatial mixing with expo-
nential rate r > 1 if there exists a constant C such that for any G = (V,E) ∈ G, any edge e ∈ V ,
any partial configuration σΛ1 and τΛ2 where Λ1,Λ2 ⊆ E\e, we have∣∣∣P σΛ1

G,e (p,λ)− P
τΛ2
G,e (p,λ)

∣∣∣ ≤ Cr−dG(e,σΛ1
̸=τΛ2

).

Lemma 27. The conditional marginal probability of edge e under condition σA for A ⊆ E\e in the
random cluster model can be translated to the edge-type ratio in the Ising model as

P σA
G,e =

Z
Ising,m(σA)
G−e

Z
Ising,m(σA)
G

where m(σA) = {βe → 1 | σA(e) = −} ∪ {βe → ∞ | σA(e) = +}.

Proof. Pinning an edge e picked or unpicked can also be understood via the modifying on the
parameters, as stated in the

ZRC,+
G,e = peZ

RC
G (pe = 1) and ZRC,−

G,e = (1− pe)Z
RC
G (pe = 0).

The corresponding modifying is setting βe = ∞ and βe = 1 respectively. One can use the rule
recursively, let pσA denote p modified by setting pe = 1 for σA(e) = + and pe = 0 for σA(e) = −
respectively.

P σA
G,e = (1− pe)

ZG(p
σA , pe = 0)

ZG(pσA)
.

Then by Lemma 24 and Remark 25,

P σA
G,e =

Z
Ising,m(σA)
G−e

Z
Ising,m(σA)
G

.

Thus, the GE-SSM or edge-deletion SSM of the Ising model will directly imply the SSM of the
random cluster model.

Theorem 28 (SSM for the random cluster model). Fix a constant δ ∈ (0, 1). For any graph
G = (V,E) with parameters p ∈ [0, 1]E and λ ∈ [0, 1 − δ]V , SSM holds for the random cluster
model.

Proof. Following the transformation between the Ising model and the random cluster model, the
result follows immediately from Theorem 13.

4.5 Optimal mixing time on lattice

The mixing time result is a direct consequence of the SSM result in Theorem 28 and the framework
in [GS24].
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4.5.1 Markov chain and mixing time

Let (Xt)t∈N be a Markov chain over a finite state space Ω with transition matrix P . (Xt)t∈N is
irreducible if for any x, y ∈ Ω, there exists t > 0 such that P t(x, y) > 0. (Xt)t∈N is aperiodic if for
any x ∈ Ω, gcd{t ∈ N+ | P t(x, x) > 0} = 1. A distribution µ over Ω is a stationary distribution
of (Xt)t∈N if µP = µ. If the Markov chain is irreducible and aperiodic, then it has a unique
stationary distribution. The total variation distance between two distributions µ, ν on the same
state space Ω is defined as dTV(µ, ν) = maxS⊆Ω |µ(S)− ν(S)| = 1

2

∑
x∈Ω |µ(x)− ν(x)| . Suppose µ

is the stationary distribution of (Xt)t∈N. The mixing time of the chain is defined as

Tmix(ϵ) = max
x0∈Ω

min{t ∈ N | dTV(P
t(x0, ·), µ) < ϵ}.

By convention, the standard mixing time is defined as Tmix = Tmix

(
1
4

)
.

4.5.2 Glauber dynamics for the random cluster model

The Glauber dynamics for the random cluster model (FK dynamics) is defined as follows. If the
configuration at time t is σ, then the configuration at time t+ 1 is obtained by

1. Pick an edge e ∈ E uniformly at random.

2. Include e in the new configuration with probability p(σ, e) = µ(σ∪{e})
µ(σ∪{e})+µ(σ\{e}) , otherwise

exclude it.

This dynamics is irreducible and reversible with respect to the distribution µ(·) induced by the
random cluster model, it coverages to the distribution π(·) no matter what the initial configuration
is. Write p(σ, e) explicitly as follows. Suppose e = (u, v) is an edge in the graph. If e is not a cut
edge in the configuration σ ∪ e, then p(σ, e) = pe. Otherwise, suppose u and v belong to distinct
connected components C1 and C2 in σ, respectively. Let x1 =

∏
v∈C1

λv and x2 =
∏

v∈C2
λv. Then,

p(σ, e) =
pe(1 + x1x2)

pe(1 + x1x2) + (1− pe)(1 + x1)(1 + x2)
.

If the parameters of the corresponding Ising model satisfy βe ∈ [βmin, βmax] and λv ∈ [0, 1],
where 1 < βmin ≤ βmax, then the following bounds hold: p(σ, e) ≤ pe ≤ 1− 1

βmax
and p(σ, e) ≥ pe

6 ≥
1
6

(
1− 1

βmin

)
. Thus, p(σ, e) is uniformly bounded away from 0 and 1 by a constant distance, i.e.,

the minimum probability that an edge unchanged in an update step can be determined by βmin

and βmax.

4.5.3 Monotonicity and the grand coupling

The grand coupling of the Glauber dynamics can be defined as follows. For a graph G = (V,E),
starting from a configuration ω and a boundary condition σΛ, the grand coupling is given by {Xω

t,σΛ
},

indexed by the initial configuration ω (or a distribution) and the boundary condition σΛ. We assign
a Poisson clock of rate 1 to each edge e ∈ E. When the clock for an edge e rings at time t, we
sample a random variable Ut uniformly from [0, 1]. If e ∈ Λ, the configuration remains unchanged;
otherwise, we update the configuration according to the Glauber dynamics: if Ut ≥ 1− p(σ, e), we
include e in the configuration; otherwise, we exclude e.

Similarly to the standard random cluster model, the grand coupling of the weighted random
cluster model is monotonic.
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Lemma 29. [FGW23, Lemma 8.2] Suppose 0 ≤ pe < 1 for all e ∈ E and 0 ≤ λv ≤ 1 for all
v ∈ V . Then the grand coupling of the Glauber dynamics for the weighted random cluster model is
monotonic.

The key of lemma is the following inequality, suppose σ1 ≤ σ2, then p(σ1, e) ≤ p(σ2, e). The
monotonic grand coupling also implies the monotonicity of the Glauber dynamics.

4.5.4 Strong spatial mixing implies optimal mixing time

Follow the approach used for the standard random cluster model on lattices in [GS24]. They
consider the continuous Glauber dynamics and thus need a constant minimum probability that an
edge is unchanged, which can be realized by setting βmin and βmax. Since the weighted random
cluster model still exhibits the monotonicity property and the monotonic grand coupling, their proof
also applies, showing that strong spatial mixing in the weighted random cluster model implies the
optimal mixing time of the Glauber dynamics.

Theorem 30. Fix 1 < βmin ≤ βmax, δ ∈ (0, 1), and d ∈ N. For any subgraph G = (V,E) of the
infinite d-dimensional lattice, with parameters β ∈ [βmin, βmax]

E and λ ∈ [0, 1−δ]V , the mixing time
of the Glauber dynamics for the corresponding random-cluster representation of the Ising model is
O(m logm), where m = |E|.

5 LDC and SSM for Other Models

5.1 SSM for hypergraph independence polynomial

A hypergraph H = (V,E) is a set of vertices V along with a set of edges, where each edge is a
nonempty subset of V . The degree of a vertex v in a hypergraph is the number of edges containing
v. An independent set in H is a set of vertices I ⊆ V such that no edge in E is a subset of I. Let
I be the set of all independent sets in H, then the independence polynomial of H is defined as

ZH(λ) =
∑
I∈I

λ|I|.

We continue using the notations + and − to denote the vertex being in and out of the inde-
pendent set, respectively. A partial configuration σΛ is feasible if it is an independent set. We say
v is proper to σΛ if v /∈ Λ and σ+

Λ∪{v} is feasible.

We need to define some operations on the hypergraph H = (V,E).

1. Induced sub-hypergraph. For Λ ⊆ V , denote HΛ = (Λ, {e ∩ Λ : e ∈ E, e ∩ Λ ̸= ∅}).

2. Mild vertex deletion. For v ∈ V , denote H ⊖ v = HV \{v}. For S ⊆ V , denote H ⊖ S =
HV \S .

3. Total vertex deletion. For v ∈ V , denote H\v = (V \{v}, {e ∈ E : v /∈ e}). For S ⊆ V ,
denote H\S = (V \S, {e ∈ E : e ∩ S = ∅}).

Note that H ⊖ v retains as many edges as possible while H\v removes all edges containing v.
In fact, we have the following relations [Tri16]:

Z+
H,v(λ) = λZH⊖v(λ) and Z−

H,v(λ) = ZH\v(λ).
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Note H ⊖ v reverse the edges containing v as possible while H\v remove all edges containing
v. Then one can see that Z+

H,v(λ) = λZH⊖v(λ) and Z−
H,v(λ) = ZH\v(λ). The marginal probability

that v is in an independent set is defined as

PH,v(λ) =
Z+
H,v(λ)

ZH(λ)
=

λZH⊖v(λ)

ZH(λ)
.

Similarly, the conditional probability that v is in an independent set, given a partial configuration
σΛ, is defined as

P σΛ
H,v(λ) =

ZσΛ,+
H,v (λ)

ZσΛ
H (λ)

.

For a partial configuration σΛ that pins vertices in Λ+ to + and vertices in Λ− to −, where
(Λ+,Λ−) is a partition of Λ, denote H[σΛ] = (H ⊖ Λ+)\Λ−. Then we have the following identity:

P σΛ
H,v(λ) = PH[σΛ],v(λ),

which allows us to analyze the ratio without the partial configuration. This identity can be verified
by comparing each independent set in H with σΛ to those in H[σΛ].

Denote λc(∆) = (∆−1)∆−1

(∆−2)∆
and λs(∆) = (∆−1)∆−1

∆∆ . We directly state the strong spatial mix-

ing result for the hypergraph independence polynomial as a theorem, which is stronger than the
definition in [BGG+19] and matches the result for graphs in [Reg23].

Theorem 31 (SSM). Fix ∆ ≥ 3 and λ ∈ Dλs(∆) ∪ (0, λc(∆)). There exist constants C > 0 and
r > 1 such that for any hypergraph H = (V,E) with maximum degree at most ∆, any two feasible
partial configurations σΛ1 and τΛ2 where Λ1 may be different with Λ2, and any vertex v proper to
σΛ1 and τΛ2, we have

|P σΛ1
H,v (λ)− P

τΛ2
H,v (λ)| ≤ Cr−dH(v,Λ1 ̸=Λ2)

where Λ1 ̸= Λ2 is the set (Λ1 \ Λ2) ∪ (Λ2 \ Λ1) ∪ {v ∈ Λ1 ∩ Λ2 : σΛ1(v) ̸= τΛ2(v)}.

5.1.1 LDC

In [Reg23], Regts establishes the LDC for the hardcore model (the independence polynomial of a
graph) via cluster expansion techniques. However, the result is not immediately clear for general
hypergraphs. Our technique for establishing divisibility also extends to hypergraphs. By con-
structing a bijection, we prove the following divisibility lemma, which subsequently leads to the
LDC.

Lemma 32. Let H = (V,E) be a hypergraph, σΛ be a partial configuration on Λ ⊆ V , u, v be two
distinct vertices in V \Λ, then

λdH(u,v)+1 | ZσΛ,+,+
H,u,v (λ)ZσΛ,−,−

H,u,v (λ)− ZσΛ,+,−
H,u,v (λ)ZσΛ,−,+

H,u,v (λ)

Proof. Let I1, I2, I3, I4 denotes the sets of independent sets admitting ZσΛ,+,+
H,u,v (λ), ZσΛ,−,−

H,u,v (λ),

ZσΛ,+,−
H,u,v (λ) and ZσΛ,−,+

H,u,v (λ) respectively. Then

ZσΛ,+,+
H,u,v (λ)ZσΛ,−,−

H,u,v (λ)− ZσΛ,+,−
H,u,v (λ)ZσΛ,−,+

H,u,v (λ)

=
∑
I1∈I1

∑
I2∈I2

λ|I1|+|I2| −
∑
I∈I3

∑
I∈I4

λ|I3|+|I4|

19



Let A be the set of (I1, I2) such that |I1|+|I2| < dH(u, v)+1 and B be the set of (I3, I4) such that
|I3|+ |I4| < dH(u, v)+ 1. We will construct a bijection between A and B and if (I3, I4) = f(I1, I2),
then |I1| + |I2| = |I3| + |I4|. For any (I1, I2) ∈ A, since |I1| + |I2| < dH(u, v) + 1, u and v
are disconnected in the induced sub-hypergraph HI1∪I2 . Let S be the connected component in
HI1∪I2 containing u and T = V \S. Then (I3, I4) = (I1|S ∪ I2|T , I1|T ∪ I2|S) ∈ B. Certainly
|I3|+ |I4| = |I1|+ |I2| and the operation is reversible since I3 ∪ I4 = I1 ∪ I2 is unchanged after the
swap.

The divisibility relation directly implies the so-called point-to-point LDC in [SY24]. Moreover,
by induction on |σΛ1 ̸= σΛ2 |, the point-to-point LDC implies the LDC.

Lemma 33 (Point-to-point LDC). Let H = (V,E) be a hypergraph, σΛ1 , σΛ2 be two partial config-
urations on Λ1,Λ2 ⊆ V , v be a proper vertex to σΛ1 and σΛ2, then

λdH(v,u)+1 | P σΛ1
H,v (λ)− P

σΛ1
,u+

H,v (λ) and λdH(v,u)+1 | P σΛ1
H,v (λ)− P

σΛ1
,u−

H,v (λ).

Lemma 34 (LDC). Let H = (V,E) be a hypergraph, σΛ1 , σΛ2 be two partial configurations on
Λ1,Λ2 ⊆ V , v be a proper vertex to σΛ1 and σΛ2, then

λdH(v,Λ1 ̸=Λ2)+1 | P σΛ1
H,v (λ)− P

σΛ2
H,v (λ).

5.1.2 Uniform bound

Galvin and coauthors claim that the independence polynomial of a hypergraph with maximum
degree ∆ is zero-free in the disk Dλs(∆+1) [GMP+24]. Later, Bencs and Buys [BB23] improve
the zero-free region to Dλs(∆) and provide another zero-free region around the Shearer’s bound
(0, λc(∆)), extending the result from graphs to hypergraphs as shown in [PR19]. With the zero-free
region, we can extend the result in [Reg23] of the graph independence polynomial to hypergraphs.

Lemma 35 (Theorem 1.1 in [BB23]). Let ∆ ≥ 2. For any hypergraph H = (V,E) with maximum
degree at most ∆ and λ ∈ CV with |λv| ≤ λs(∆) for all v ∈ V we have ZH(λ) ̸= 0.

Lemma 36 (Theorem 1.2 in [BB23]). Let ∆ ≥ 3. There exists an open neighborhood U∆ of the
interval (0, λc(∆)) such that for any hypergraph H = (V,E) with maximum degree at most ∆ and
λ ∈ U we have ZH(λ) ̸= 0.

Lemma 37. Let ∆ ≥ 3, H be a hypergraph with maximum degree at most ∆, σΛ be a partial
configuration on Λ ⊆ V , v be a proper vertex to σΛ. If λ ∈ (Dλs(∆) ∪U∆)\{0}, then P σΛ

H,v(λ) avoids
0 and 1.

Proof. Since P σΛ
H,v(λ) = PH[σΛ],v(λ), prove PH,v(λ) always avoids 0 and 1 is enough. By Lemmas 35

and 36, ZH(λ), ZH\v(λ) and ZH⊖v(λ) ̸= 0. Thus PH,v(λ) =
λZH⊖v(λ)
ZH(λ) ̸= 0 and PH,v(λ) = 1 −

ZH\v(λ)

ZH(λ) ̸= 1. We are done.

Lemma 38 (uniform bound). Fix ∆ ≥ 3, let U = (Dλs(∆) ∪ U∆)\{0}, S be a compact subset of
U . There exist a constant C > 0 such that for any hypergraph H = (V,E) with maximum degree
at most ∆, any v ∈ V , any λ ∈ S, we have |PH,v(λ)| ≤ C.

Proof. By Lemma 37, PH,v(λ) always avoids 0 and 1 for λ ∈ U . Pick λ′ ∈ (0, λs(∆)), then PH,v(λ
′)

is a probability and hence contained in [0, 1]. Then by Lemma 6, the upper bound is got.

20



If the zero-free region is not a disk, it seems that we cannot apply Lemma 16 to deduce that
any fixed λ in the zero-free region exhibits SSM. However, by the Riemann mapping theorem, we
can transform an arbitrary zero-free region into a unit disk and then apply Lemma 16, where the
LDC and uniform bound still hold. For details, see [Reg23, SY24].

Proof of Theorem 31. This follows from the argument of the Riemann mapping theorem and the
results of Lemmas 16, 34 and 38.

5.1.3 FPTAS

The computation tree of the hypergraph independence polynomial introduced in [LL14, LYZ15] is
the key tool to derive FPTAS from the SSM property. We don’t give the exact construction of the
computation tree here, but utilize it as a black box.

Theorem 39. Let H = (V,E) be a hypergraph of maximum degree ∆. Then there exists a hypertree
T with root v and maximum degree at most ∆ such that PH,v(λ) = PT,v(λ). If size of edges in H
is at most k, let Tk be the truncation of T at depth d from v, then we can compute PTd,v(λ) exactly
in time O(|V |(k∆)d).

Lemma 40. If H is a hypergraph, v is a vertex in H and λ > 0 , then 0 ≤ PH,v(λ) ≤ λ
1+λ .

Proof. If I is an independent set in H containing v with weight w, then I\{v} is still an independent
set in H with weight w/λ. Thus ZH(λ) = Z+

H,v(λ) + Z−
H,v(λ) ≥ Z+

H,v(λ)(1 + 1/λ), which implies

PH,v(λ) ≤ λ
1+λ .

Lemma 41. Fix ∆ ≥ 3 and S be a compact subset of (Dλs(∆) ∪ U∆)\{0}, there exists a constant
C > 0 such that for any hypergraph H = (V,E) with maximum degree at most ∆, any v ∈ V , any
λ ∈ S, we have |1− PH,v(λ)| ≥ C.

Proof. Note PH,v(λ) always avoids 0 and 1 for λ ∈ (Dλs(∆) ∪ U∆)\{0}. Then 1
1−PH,v(λ)

is analytic

for λ ∈ (Dλs(∆)∪U∆)\{0} and always avoids 0 and 1. And pick a positive constant λ′ ∈ (0, λs(∆)),

then 0 ≤ PH,v(λ
′) ≤ λ′

1+λ′ always holds, i.e. 1 ≤ 1
1−PH,v(λ)

≤ 1 + λ′. Then by Lemma 6, the upper

bound of
∣∣∣ 1
1−PH,v(λ)

∣∣∣ is got, and then the lower bound of |1− PH,v(λ)| is got.

Theorem 42 (FPTAS). Fix ∆ ≥ 3, k ≥ 2 and λ ∈ Dλs(∆) ∪ U∆, there exists an FPTAS for the
hypergraph independence polynomial ZH(λ) for any hypergraph H = (V,E) with maximum degree
at most ∆ and maximum edge size at most k.

Proof. When λ = 0, the problem is trivial. Consider λ ̸= 0. Write V = {v1, . . . , vn}, let Λi =
{v1, . . . , vi} and σi be the partial configuration which maps all vertices in Λi to − (for i = 0, . . . , n).
Then

1

ZH(λ)
=

Zσn
H (λ)

Zσ0
H (λ)

=
n∏

i=1

Zσi
H (λ)

Z
σi−1

H (λ)
=

n∏
i=1

[
1− PH,vi(λ)

]
=

n∏
i=1

[
1− PH[σi−1],vi(λ)

]
.

To approximate ZH(λ) with factor ε, approximating 1− PH[σi−1],vi(λ) with factor ε
n is enough.

By Lemma 41, additive error Cε
2n for some constant C > 0 is enough. Then by computation tree in

[LL14] and the SSM result, truncating the computation tree at depth O(log n
ε ) (one way is pinning

all vertices at O(log n
ε ) depth to (−)) and using the SSM result, the running time is poly(nε ), thus

we can get the FPTAS.
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Remark 43. In [LL14, LYZ15], the authors prove a computationally efficient correlation decay
for λ ∈ (0, λc(∆)), which leads to a faster decay rate when dealing with hyperedges of larger sizes.
Then they derive an FPTAS for hypergraphs with bounded degree but unbounded edge size based on
this correlation decay result.

5.2 SSM for binary symmetric Holant problems

Let G = (V,E) be a graph of maximum degree ∆. We consider the Holant problem in the binary
symmetric case, which we now describe. Let {fv}v∈V : N → R≥0 be a family of functions, one for
each vertex v ∈ V in the input graph. One should think of each fv as representing a local constraint
on the assignments to edges incident to v. Since we are restricting ourselves to the binary case, our
configurations σ will map edges to {0, 1} (or − and + spins). Furthermore, since we are restricting
ourselves to the symmetric case, our local functions fv will only depend on the number of edges
incident to v which are mapped to 1. With these {fv}v∈V in hand, we may write the multivariate
partition function as

ZG(λ) =
∑

σ:E→{0,1}

∏
v∈V

fv(|σE(v)|)
∏

e∈E,σ(e)=1

λe,

where E(v) is the set of all edges adjacent to v, σE(v) is the configuration restricted on E(v), and
|σE(v)| is the number of edges in E(v) with assignment 1.

This class of problems is already incredibly rich and encompasses many classical objects studied
in combinatorics and statistical physics. As stated in [CLV24], the weighted even subgraphs model
and the Ising model on line graphs are included for certain choices of fv.

• Weighted Even Subgraphs: In this case, all fv are the same and given by the weighted “parity”
function. More specifically, for a fixed positive parameter ρ > 0, we have

fv(k) =

{
1, if k is even;

ρ, if k is odd.

In the case ρ = 0, then ZG(1) counts the number of even subgraphs, that is, subsets of edges
such that all vertices have even degrees in the resulting subgraph.

• Ising Model on Line Graphs: In this case, each fv depends on the degree of v. If β > 0 is
some fixed parameter (independent of v), and d = deg(v), then we have

fv(k) =

{
β(

k
2)β(

d−k
2 ), if 0 ≤ k ≤ d;

0, otherwise.

Let G = (V,E) be a graph, e ∈ E an edge, and σΛ a partial configuration on Λ ⊆ E\{e}.
Similarly to the random cluster model, the conditional probability that e is pinned + is given by
P σΛ
G,e(λ) = ZσΛ,+

G,e (λ)/ZσΛ
G (λ). The strong spatial mixing can also be defined as below.

Definition 44 (SSM for Holant). Fix fv be the local function and λ. Let G be a family of graphs.
The Holant problem defined on G with fv and λ is said to satisfy strong spatial mixing with expo-
nential rate r > 1 if there exists a constant C such that for any G = (V,E) ∈ G, any edge e ∈ E,
any partial configuration σΛ1 and τΛ2 where Λ1,Λ2 ⊆ E\e, we have∣∣∣P σΛ1

G,e (λ)− P
τΛ2
G,e (λ)

∣∣∣ ≤ Cr−dG(e,σΛ1
̸=τΛ2

).
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5.2.1 Zerofree

In [CLV24], to establish the spectral independence property from zero-freeness, the authors prove
the zero-free region for weighted even subgraphs and the Ising model on line graphs. Notably, in
[CLV24], the authors exclude the λ factor when pinning a vertex to + (or 1), whereas we do not.
Consequently, we exclude the point 0 from their zero-free region.

Lemma 45. Fix ρ ∈ (0, 1) and ∆ ∈ N+, then there exists a complex region U containing [0,∞)
such that for all graphs G with bounded degree ∆ and all partial configurations σ, the partition
function of the weighted even subgraph model satisfies ZG(λ) ̸= 0 for any λ ∈ U \ {0}.

Lemma 46. Fix β ∈ (0, 1) and ∆ ∈ N+, then there exists a complex region U containing [0,∞)
such that for all line graphs G with bounded degree ∆ and all partial configurations σ, the partition
function of the antiferromagnetic Ising model satisfies ZG(λ) ̸= 0 for any λ ∈ U \ {0}.

Note that P σΛ
G,e is analytic in the region λ ∈ U . One only needs to check that the ratio is well

defined at λ = 0. This holds because ZσΛ,+
G,e has a higher order of λ than ZσΛ

G .

5.2.2 LDC

Lemma 47. Let G = (V,E) be a graph, σ be a partial configuration on Λ ⊆ E, e1 and e2 be two
different edges in E\Λ, then

λdG(e1,e2)+2 | Zσ,+,+
G,e1,e2

Zσ,−,−
G,e1,e2

− Zσ,+,−
G,e1,e2

Zσ,−,+
G,e1,e2

.

Proof. Let S1 be the set of configurations that agree with Zσ,+,+
G,e1,e2

, and similarly define S2, S3 and
S4. Then, we have

Zσ,+,+
G,e1,e2

Zσ,−,−
G,e1,e2

− Zσ,+,−
G,e1,e2

Zσ,−,+
G,e1,e2

=
∑

σ1∈S1,σ2∈S2

w(σ1)w(σ2)−
∑

σ3∈S3,σ4∈S4

w(σ3)w(σ4)

Define A = {(σ1, σ2) | n+(σ1) + n+(σ2) ≤ dG(e1, e2) + 1, σ1 ∈ S1, σ2 ∈ S2} and similarly define
B ⊆ S3 × S4. We show there exists a bijection f : A → B such that if (σ3, σ4) = f(σ1, σ2) then
w(σ1)w(σ2) = w(σ3)w(σ4). If n+(σ1) + n+(σ2) ≤ dG(e1, e2) + 1, then the subgraph H = (V, σ1|σ2)
is disconnected. Pick S as the connected component containing e1, and let T = E\S. Define
(σ3, σ4) = (σ1|S ∪ σ2|T , σ2|S ∪ σ1|T ), then f(σ1, σ2) = (σ3, σ4) satisfies our requirements. Firstly f
is bijection since σ1|σ2 = σ3|σ4, the process is fully reversible. Since there are no + edge between
S and T in σi(i = 1, 2, 3, 4), the local functions fv for each v ∈ S are determined by σi[S] and
similarly for v ∈ T . Thus,

wG(σ1)wG(σ2) =wG[S](σ1|S)wG[T ](σ1|T )wG[S](σ2|S)wG[T ](σ2|T )
=wG[S](σ1|S)wG[T ](σ2|T )wG[S](σ2|S)wG[T ](σ1|T )
=wG[S](σ3|S)wG[T ](σ3|T )wG[S](σ4|S)wG[T ](σ4|T )
=wG(σ3)wG(σ4).

The divisibility relation implies point-to-point LDC, which then extends to LDC by induction.
The definition of LDC in the Holant framework follows the same description as in the random
cluster model.
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5.2.3 SSM

Similar to before, pick any λ > 0 is a uniformly bounded point (as a probability), then we can deduce
the uniform bound on a compact subset by Lemma 6 from the zero-freeness result. Then following
Regts’s approach, we can establish the SSM property for binary symmetric Holant problems once
the zero-free region is well understood.

Theorem 48. Fix ρ ∈ (0, 1), ∆ ∈ N+ and λ > 0. Then weighted even subgraph model for all
graphs G with bounded degree ∆ exhibits SSM.

Theorem 49. Fix β ∈ (0, 1), ∆ ∈ N+ and λ > 0. Then the Ising model for all line graphs G with
bounded degree ∆ exhibits SSM.

5.3 Edge-type SSM for Potts model

The partition function of the Potts model (without external field) of a graph G = (V,E) is defined
as

ZG(q,w) =
∑

σ:V→[q]

∏
(u,v)∈E

σ(u)=σ(v)

w(u,v).

where [q] = {1, 2, . . . , q}, q is the number of colors, w = (we)e∈E is the edge activity vector. In the
univariate case, write w = 1 + z, then the partition function of the Potts Model can be written in
the form of the Tutte polynomial [S+05] as

ZG(q, w) =
∑
F⊆E

qκ(V,F )z|F |,

where κ(V, F ) is the number of connected components of the spanning subgraph (V, F ).
Similar to the edge-type SSM for the Ising model in Corollary 15, define the ratio of the partition

function of the Potts model as

PG,e(w) =
ZG−e(q, w)

ZG(q, w)
.

We can prove the Potts model exhibits edge-deletion SSM, where the constant η ≥ 0.002 is from
the zero-free region [BBR24].

Theorem 50. Fix ∆ ∈ N, q ≥ (2− η)(2∆− 2) and w ∈ [0, 1], then there exist constant C > 0 and
r > 1 such that for any graph G = (V,E) with maximum degree at most ∆, e ∈ E, A,B ⊆ E\{e},
we have

|PG−A,e(q, w)− PG−B,e(q, w)| ≤ Cr−dG(e,A̸=B).

In [BBR24], the zero-free region of the univariate Potts model is studied, and the authors
claimed that it also works in the multivariate setting.

Lemma 51 (Theorem 1 and Section 8 in [BBR24]). There exists a constant η ≥ 0.002 such that
for all integers ∆ ≥ 3 and q ≥ (2− η)∆ there exists an open set U∆,q ⊆ C containing the interval
[0, 1] such that for any graph G = (V,E) of maximum degree at most ∆ and w ∈ (U∆,q)

E and we
have ZG(q,w) ̸= 0.

By Lemma 51, we can get the following result. For A,B ⊆ C, define A ·B = {ab | a ∈ A, b ∈ B}.
We can immediately get there exist an open set U∆,q ⊆ U∆,q containing the real closed interval

[0, 1] and U∆,q · U∆,q ⊆ U∆,q. Open set U∆,q\{1} will guarantee the ratio PG,e(w) =
ZG−e(q,w)
ZG(q,w) avoid

0 and 1.
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5.3.1 Uniform bound

Lemma 52. If ∆ ∈ N, q ≥ (2−η)(2∆−2), w ∈ U2∆−2,q\{1}, G = (V,E) is a graph with maximum
degree at most ∆ and e ∈ E, then PG,e(w) avoid 0 and 1.

Proof. By Lemma 51, PG,e(w) ̸= 0 is trivial. We prove PG,e(w) ̸= 1. Let e = (u, v), then

ZG(q, w)− ZG−e(q, w)

=
∑

σ∈[q]V

∏
(x,y)∈E

σ(x)=σ(y)

w −
∑

σ∈[q]V

∏
(x,y)∈E−e
σ(x)=σ(y)

w

=(w − 1)
∑

σ∈[q]V
σ(u)=σ(v)

∏
(x,y)∈E−e
σ(x)=σ(y)

w.

Thus we can construct G′ = (V ′, E′) from G by merging u, v into a single vertex x, if parallel
edges (u, y) and (v, y) exist in G, merge them into a single edge and set w(x,y) = w(u,y)w(v,y).
Then ZG(q, w) − ZG−e(q, w) = (w − 1)ZG′(q,w), where w is the edge activity vector of G′. Note
w ∈ (U2∆−2,q)

E′
and G′ has maximum degree at most 2∆ − 2, since q ≥ (2 − η)(2∆ − 2), by

Lemma 51, ZG′(q,w) ̸= 0 and hence PG,e(w) ̸= 1.

Pick a small enough ε > 0 such that 1+ε ∈ U2∆−2,q, one can see that 0 < PG,e(1+ε) < 1 always
holds. Then by Lemma 6, we can get the uniform bound of the ratio of the partition function of
the Potts model.

Lemma 53. Fix ∆ ∈ N, and S is a compact subset of U2∆−2,q\{1}. There exists a constant C > 0
such that for any graph G = (V,E) with maximum degree at most ∆, any q ≥ (2− η)(2∆− 2), any
e ∈ E, any w ∈ S, we have |PG,e(w)| ≤ C.

5.3.2 LDC

Lemma 54. Let G = (V,E) be a graph, e1, e2 be two different edges in G, then

(w − 1)dG(e1,e2) | ZG−e1(q, w)ZG−e2(q, w)− ZG(q, w)ZG−{e1,e2}(q, w).

Proof. Let z = w − 1, then

ZG−e1(q, w)ZG−e2(q, w)− ZG(q, w)ZG−{e1,e2}(q, w)

=
∑

F1⊆E−e1,
F2⊆E−e2

qκ(V,F1)+κ(V,F2)z|F1|+|F2| −
∑

F3⊆E,
F4⊆E−{e1,e2}

qκ(V,F3)+κ(V,F4)z|F3|+|F4|

Let A be the set of (F1, F2) in the first sum such that |F1|+ |F2| < dG(e1, e2) and B be the set
of (F3, F4) in the second sum such that |F3| + |F4| < dG(e1, e2). We will show that there exists a
bijection f between A and B such that if (F3, F4) = f(F1, F2), then |F3| + |F4| = |F1| + |F2| and
κ(V, F3) + κ(V, F4) = κ(V, F1) + κ(V, F2).

Let F1, F2 be a pair in A, since |F1| + |F2| < dG(e1, e2), then e1, e2 are disconnected in the
subgraph H = (V, F1 ∪ F2 ∪ {e1, e2}). Consider the connected component S of H, which contains
e1, and let T = V \S. Then F3 = F1|T ∪ F2|S and F4 = F1|S ∪ F2|T are in B. One can check that
(F3, F4) is the desired pair and the process is reversible (since F1∪F2 = F3∪F4). We are done.
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Lemma 55. Let G = (V,E) be a graph, e ∈ E, and A ⊆ E\{e}, then the Taylor series near w = 1
of PG,e(q, w) and PG−A,e(q, w) satisfies

(w − 1)dG(e,A) | PG,e(q, w)− PG−A,e(q, w).

Proof. We prove this by induction on |A|. The base case |A| = 1, for instance A = {e′},

PG,e(q, w)− PG−e′,e(q, w) =
ZG−e(q, w)

ZG(q, w)
−

ZG−{e,e′}(q, w)

ZG−e′(q, w)

=
ZG−e(q, w)ZG−e′(q, w)− ZG(q, w)ZG−{e,e′}(q, w)

ZG(q, w)ZG−e′(q, w)
.

Clearly 1
ZG(q,w)ZG−e′ (q,w) is analytic near w = 1. By Lemma 54, we have (w − 1)dG(e,e′) |

PG,e(q, w)− PG−e′,e(q, w).
Now consider the case k ≥ 2, suppose the statement holds for |A| ≤ k − 1, we prove it for

|A| = k. Pick e′ ∈ A, let A′ = A\{e′}, then

PG,e(q, w)− PG−A,e(q, w) = [PG,e(q, w)− PG−A′,e(q, w)] + [PG−A′,e(q, w)− PG−A,e(q, w)].

By induction hypothesis, we have (w−1)dG(e,A′) | PG,e(q, w)−PG−A′,e(q, w), and (w−1)dG−A′ (e,e′) |
PG−A′,e(q, w) − PG−A,e(q, w). Since dG(e,A) ≤ dG(e,A

′) and dG(e,A) ≤ dG(e, e
′) ≤ dG−A′(e, e′),

we have (w − 1)dG(e,A) | PG,e(q, w)− PG−A,e(q, w).

Lemma 56. Let G = (V,E) be a graph, e ∈ E, and A,B ⊆ E\{e}, then the Taylor series near
w = 1 of PG−A,e(q, w) and PG−B,e(q, w) satisfies

(w − 1)dG(e1,A̸=B) | PG−A,e(q, w)− PG−B,e(q, w).

Proof. Let G′ = G− (A ∪B), A′ = A\B and B′ = B\A, then

PG−A,e(q, w)− PG−B,e(q, w) =PG′−A′,e(q, w)− PG′−B′,e(q, w)

=[PG′−A′,e(q, w)− PG′,e(q, w)] + [PG′,e(q, w)− PG′−B′,e(q, w)].

By the previous lemma, we have (w−1)dG′ (e,A′) | PG′−A′,e(q, w)−PG′,e(q, w) and (w−1)dG′ (e,B′) |
PG′,e(q, w)−PG′−B′,e(q, w). Since dG(e,A ̸= B) = min{dG(e,A′), dG(e,B

′)} ≤ min{dG′(e,A′), dG′(e,B′)},
we are done.

Combining Lemmas 16, 53 and 56, we can establish the edge-type SSM result for the Potts
model (Theorem 50).

Remark 57. Ratio 1/PG,e(w) also exhibits edge-type SSM. Since 1/PG,e(w) still avoid 0 and 1 and

the 0 < 1/PG,e(0) =
ZG(q,0)

ZG(q,0)+ZG′ (q,0)+Z < 1, the uniform bound can be obtained by Lemma 6. Also,

LDC can still be established by the same technique.

5.4 Vertex-type SSM for Ising

Similar to the edge-type SSM of the Ising model in Theorem 13, we also establish a vertex-type
SSM.

Theorem 58. Fix edge activity β ≥ 1 and uniform external λ ∈ D 1
β
for Ising model, and c ∈ [0, 1).

Then there exist constant C > 0 and r > 1 such that for all graph G = (V,E), v ∈ V , A,B ⊆ V \{v},
let m = {λv → cλ}, m1 = {λu → cλ}u∈A, m2 = {λu → cλ}u∈B, we have∣∣∣Pm1

G,m − Pm2
G,m

∣∣∣ ≤ Cr−dG(v,m1 ̸=m2).
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5.4.1 Vertex-type LDC

Lemma 59. For β ≥ 1, c ∈ [0, 1), G = (V,E) be a graph, v ∈ V , A ⊆ V \{v}, λ ∈ DV ,
m = {λvz → cλvz}, m1 = {λuz → cλuz}u∈A, then

zdG(v,A)+1 | PG,m(β,λz)− Pm1
G,m(β,λz).

Proof.

PG,m(β,λz)− Pm1
G,m(β,λz) =

Zm
G (β,λz)

ZG(β,λz)
−

Zm,m1

G (β,λz)

Zm1
G (β,λz)

=
Zm
G (β,λz)Zm1

G (β,λz)− Zm,m1

G (β,λz)ZG(β,λz)

ZG(β,λz)Z
m1
G (β,λz)

.

Clearly 1
ZG(β,λz)Z

m1
G (β,λz)

is analytic near z = 0. Proof of Lemma 19 also apply to vertex, then

we have zdG(v,A)+1 | PG,m(β,λz)− Pm1
G,m(β,λz).

Lemma 60. For β > 1, c ∈ [0, 1), G = (V,E) be a graph, λ ∈ DV , v ∈ V , A,B ⊆ V \{v},
m = {λvz → cλvz}, m1 = {λuz → cλuz}u∈A, m2 = {λuz → cλuz}u∈B, then

zdG(v,m1 ̸=m2)+1 | Pm1
G,m(β,λz)− Pm2

G,m(β,λz)

where m1 ̸= m2 is vertex set where m1 and m2 differ.

Proof. Consider λ′z as the uniform external field λz applied m1 ∩ m2, let m′
1 = m1\m2, m

′
2 =

m2\m1, then

Pm1
G,m(β,λz)− Pm2

G,m(β,λz) =P
m′

1
G,m(β,λ′z)− P

m′
2

G,m(β,λ′z)

=[P
m′

1
G,m(β,λ′z)− PG,m(β,λ′z)] + [PG,m(β,λ′z)− P

m′
2

G,m(β,λ′z)].

By the previous lemma, we have zdG(v,m′
1)+1 | PG,m′

1
(β,λ′z) − PG,m(β,λ′z) and zdG(v,m′

2)+1 |
PG,m(β,λ′z)−PG,m′

2
(β,λ′z). Since dG(v,m1 ̸= m2) = min{dG(v,m′

1), dG(v,m
′
2)}, we are done.

5.4.2 Uniform bound of vertex-type ratio

Lemma 61 ([SY24, Corollary 40 ]). Let G be a graph and v be a vertex in G. Then the partition
function of Ising model Z+

G,v(β,λ) can be expressed as:

Z+
G,v(β,λ) = λvZG\{v}(β,λ

v+)

where ZG\{v}(β,λ
v+) is the partition function of the Ising model with non-uniform external fields

λv+ on the graph G\{v} obtained from G by deleting v, and λv+
w = λw for w ∈ V \(N(v)∪{v}) and

λv+
w = βλw for w ∈ N(v).

Lemma 62. Let G = (V,E) be a graph, β > 1 , λ ∈ DV
1
β

, v ∈ V (G), if λ′ ∈ D 1
β
and λ′

v ̸= λv, then

PG,{λv→λ′}(β,λ) avoid 0 and 1.
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Proof. By Lee–Yang theorem, it is trivial that PG,{λv→λ′}(β,λ) ̸= 0. We prove the ratio avoids 1.

ZG(β,λ)− ZG(β,λ
′)

=Z+
G,v(β,λ) + Z−

G,v(β,λ)− Z+
G,v(β,λ

′)− Z−
G,v(β,λ

′)

=Z+
G,v(β,λ)− Z+

G,v(β,λ
′)

=(λv − λ′
v)ZG\{v}(β,λ

v+) (see Lemma 61)

Since λ ∈ DV
1
β

, then λv+ ∈ DV \{v} , by Lee–Yang theorem, ZG\{v}(β,λ
v+) ̸= 0, thus the ratio

avoid 1.

Lemma 63. Fix β ≥ 1 and c ∈ [0, 1), then for any compact set S ⊆ D 1
β
\{0}, there exists a

constant C such that for any graph G = (V,E), vertex v ∈ V , A ⊆ V \{v}, m = {λv → cλv},
m1 = {λu → cλu}u∈A, such that |Pm1

G,m(β, λ)| ≤ C for all λ ∈ S.

Proof. By Lemma 62, Pm1
G,m(β, λ) avoid 0 and 1 for all λ ∈ D 1

β
\{0}. Pick a positive constant

λ′ ∈ (0, 1
β ), then 0 < Pm1

G,m(β, λ′) < 1 always holds. Then by Lemma 6, the upper bound is got.

Combining Lemmas 16, 60 and 63, we can establish the vertex type SSM.
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