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Abstract

We prove a totally novel form of strong spatial mixing (SSM) for the ferromagnetic Ising
model in terms of edge activities. This SSM property holds for the entire zero-free region of Lee–
Yang Theorem, i.e., β > 1 and |λ| < 1 or symmetrically |λ| > 1. We also prove a form of SSM in
terms of external fields in a smaller region β > 1 and |λ| < 1/β or symmetrically |λ| > β. These
SSM properties can be exploited to devise FPTASes via Weitz’s and Barvinok’s algorithms. Our
proof is based on the framework introduced by [Reg23], namely local dependence of coefficients
(LDC) and a uniform bound implies SSM. In order to establish LDC, we prove a division relation
for the 2-spin system on general graphs.
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1 Introduction
Spin systems originated from statistical physics to model interactions between neighbors on graphs.
In this paper, we focus on 2-state spin (2-spin) systems. Such a system is specified by two edge
interaction parameters β and γ, and a uniform external field λ. An instance is a graph G = (V,E).
A configuration σ is a mapping σ : V → {+,−} which assigns one of the two spins + and − to
each vertex in V . The weight w(σ) of a configuration σ is given by

w(σ) = βm+(σ)γm−(σ)λn+(σ),

where m+(σ) denotes the number of (+,+) edges under the configuration σ, m−(σ) denotes the
number of (−,−) edges, and n+(σ) denotes the number of vertices assigned to spin +. The partition
function ZG(β, γ, λ) of the system parameterized by (β, γ, λ) is defined to be the sum of weights
over all configurations, i.e.,

ZG(β, γ, λ) =
∑

σ:V→{+,−}

w(σ).

We can also define the 2-spin system with non-uniform edge activities β = (βe)e∈E , γ = (γe)e∈E
and external fields λ = (λv)v∈V . Define E+ as the set of edges with both endpoints having spin +,
E− as the set of edges with both endpoints having spin −, and V + as the set of vertices with spin
+. Then, the partition function of the 2-spin system with non-uniform edge activities β = (βe)e∈E ,
γ = (γe)e∈E and external fields λ = (λv)v∈V is

ZG(β,γ,λ) =
∑

σ:V→{+,−}

∏
e∈E+

βe
∏

e∈E−

γe
∏

v∈V +

λv,

where we use xi notation to denote the i-index component of the vector x.
Computing the partition function of the 2-spin system given an input graph G is a very basic

counting problem, and it is known to be #P-hard for all complex valued parameters (β, γ, λ)
but a few very restricted settings such as βγ = 1 or λ = 0 [Bar82, CCL13, CLX14]. Many natural
combinatorial problems can be formulated as computing the partition function of the 2-spin system.
For example, when β = 0 and γ = 1, ZG(0, 1, λ) is the independence polynomial of the graph G
(also known as the hard-core model in statistical physics); it counts the number of independent sets
of the graph G when λ = 1. When β = γ, such a 2-spin system is the famous Ising model.

In classical statistical mechanics the parameters (β, γ, λ) are usually non-negative real num-
bers and (β, γ) ̸= (0, 0). Such 2-spin systems are divided into the ferromagnetic case (βγ > 1)
and the antiferromagnetic case (βγ < 1). For non-negative (β, γ, λ) that are not all zeros, the
partition function can be viewed as the normalizing factor of the Gibbs distribution, which is the
distribution where a configuration σ is drawn with probability PrG;β,γ,λ(σ) =

w(σ)
ZG(β,γ,λ) . However,

it is meaningful to consider parameters of complex values. First, the parameters are generally
complex valued for quantum computation. For instance, the partition function of 2-spin systems
with complex parameters is closely related to the output probability amplitudes of quantum cir-
cuits [DDVM11, ICBB14, MB19]. Moreover, even in classical theory, the study of the location of
complex zeros of the partition function ZG(β, γ, λ) connects closely to the analyticity of the free en-
ergy logZG(β, γ, λ), which is a classical notion in statistical physics for defining and understanding
the phenomenon of phase transitions. One of the first and also the best known results regarding the
zeros of the partition function is the Lee–Yang theorem [YL52,LY52] for the Ising model. This re-
sult was later extended to more general models by several people [Asa70,Rue71,GS73,New74,LS81].
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Another standard notion for formalizing phase transitions in the 2-spin system is correlation decay,
which refers to that correlations between spins decay exponentially with the distance between them.

The two notions of phase transitions can also be exploited directly to devise fully polynomial-
time deterministic approximation schemes (FPTAS) for computing the partition function of the
2-spin system. The method associated with correlation decay, or more precisely strong spatial
mixing (SSM) was originally developed by Weitz [Wei06] for the hard-core model. It turns out
to be a very powerful tool for antiferromagnetic 2-spin systems [ZLB11, LLY12, LLY13, SST14].
While for ferromagnetic 2-spin systems, limited results [ZLB11,GL18] have been obtained via the
correlation decay method. The method turning complex zero-free regions of the partition function
into FPTASes was developed by Barvinok [Bar16], and extended by Patel and Regts [PR17]. It
is usually called the Taylor polynomial interpolation method. Motivated by this method, several
complex zero-free regions have been obtained for hard-core models [PR19, BCSV23], Ising models
[LSS19a,PR20], and general 2-spin systems [GLL20,SS21].

In this paper, we prove a new form of SSM for the ferromagnetic Ising model in terms of edge
activities. This SSM property holds for the entire zero-free region of Lee–Yang Theorem, i.e., β > 1
and |λ| < 1 or symmetrically |λ| > 1. We also prove a form of SSM in terms of external fields in a
smaller region |λ| < 1/β or symmetrically |λ| > β. These SSM properties can be exploited to devise
FPTASes via Weitz’s and Barvinok’s algorithms. Our proof is based on the framework introduced
by [Reg23] and developed by [SY24], namely local dependence of coefficients (LDC) and a uniform
bound implies SSM. In order to establish LDC, we prove a division relation for the 2-spin system
on general graphs which is our main technical contribution. Such a division relation to some degree
can be viewed as a generalization of the Christoffel–Darboux type identity for the 2-spin system
on trees [SY24], but it is proved in an entirely different way.

The paper is organized as follows. In Section 2, we introduce the framework of zero-freeness
implying SSM. In Section 3, we prove a division relation for the 2-spin system on general graphs.
  In Section 4 , we introduce and prove the SSM property in terms of edge activities for the
ferromagnetic Ising model using Lee–Yang theorem and the division relation. In Section 5 , we
discuss how this edge-type SSM gives an FPTAS. We introduce and prove the SSM property in
terms of external fields similarly in the appendix.

2 Preliminaries
2.1 Notation and definitions
Given a graph G = (V,E), in 2-spin systems, the marginal probability that a vertex v is assigned to
spin (+) is denoted by PG,v =

Z+
G,v(β,γ,λ)

ZG(β,γ,λ) , where Z+
G,v(β, γ, λ) is the contribution to ZG(β, γ, λ) over

all configurations that assign spin (+) to vertex v. Let σΛ be a partial configuration of some vertices
Λ ⊂ V (G). The marginal probability that a vertex v /∈ Λ is assigned to spin (+) conditioned on
the partial configuration σΛ is denoted by P σΛ

G,v =
Z

σΛ
G,v(β,γ,λ)

Z
σΛ
G (β,γ,λ)

, where ZσΛ
G (β, γ, λ) is the contribution

to ZG(β, γ, λ) over all configurations that agree with σΛ on Λ and ZσΛ
G,v(β, γ, λ) is the contribution

to ZσΛ
G (β, γ, λ) that assign spin (+) to vertex v.

Such a marginal probability can be viewed as a ratio of the partition function. Thus we can
define a new type of ratio under the vector value setting, where we change the value of the vector
value (β,γ,λ) instead of pinning vertices. For example, we can see that the operation of pinning
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a vertex v to spin (−) is equivalent to setting λv = 0. Also, the operation of removing an edge e is
equivalent to setting βe = γe = 1.

The ratio of the partition function after changing the vector value from (β,γ,λ) to (β′,γ ′,λ′)
is

ZG(β
′,γ ′,λ′)

ZG(β,γ,λ)
.

We can use a mapping m to denote the change of the vector value, a mapping is a set of complex
function C → C which maps a component of the vector value to a new value. For example, when
we pin a vertex v with (−) spin, we set λv = 0, then m = {λv → 0}. When we remove an edge e,
we set βe = γe = 1, then m = {βe → 1, γe → 1}. We denote Zm

G (β,γ,λ) as the partition function
of the system after the mapping m. Then we can define the ratio of the partition function after
the mapping m to the original partition function as

PG,m(β,γ,λ) =
Zm
G (β,γ,λ)

ZG(β,γ,λ)
.

Moreover, we can define the ratio of the partition function conditioning on a pre-described
mapping, denoted by

Pm1
G,m(β,γ,λ) =

Zm1,m
G (β,γ,λ)

Zm1
G (β,γ,λ)

.

The ratio is well defined if m and m1 do not change the same component of the vector value.
If no confusion, we will omit the vector value (β,γ,λ) in the notation.

Having such a new type of ratio, we can define the Strong Spatial Mixing (SSM) property on
the vector value version. Firstly, we review the initial definition of SSM for the 2-spin system.

Definition 2.1 (Strong spatial mixing). Fix complex parameters β, γ, λ where (β, γ) ̸= (0, 0) and
λ ̸= 0, and a family of graphs G. The corresponding 2-spin system defined on G with parameters
(β, γ, λ) is said to satisfy strong spatial mixing (SSM) with exponential rate r > 1 if there exists a
constant C such that for any G = (V,E) ∈ G, any feasible partial configurations σΛ1 and τΛ2 where
Λ1 may be different with Λ2, and any vertex v proper to σΛ1 and τΛ2, we have∣∣∣P σΛ1

G,v − P
τΛ2
G,v

∣∣∣ ≤ Cr−dG(v,σΛ1
̸=τΛ2

).

Here, we denote σΛ1 ̸= τΛ2 the set (Λ1 \ Λ2) ∪ (Λ2 \ Λ1) ∪ {v ∈ Λ1 ∩ Λ2 : σΛ1(v) ̸= τΛ2(v)} (i.e.,
the set on which σΛ1 and τΛ2 differ with each other), and dG(v, σΛ1 ̸= τΛ2) is the shortest distance
from v to any vertex in σΛ1 ̸= τΛ2.

Replace the partial configuration with the mapping, we can similarly define the SSM property
on the vector value version. Since our result focus on the Ising model, for simplicity, we directly
give our result on the Ising model and from now on we will only consider the Ising model.

For ρ > 0, we define the open disk Dρ = {z ∈ C : |z| < ρ} and write D as D1.

Theorem 2.2 (edge-type SSM). Fix uniform external field λ ∈ D and two constants 0 < C1 < C2

, then there exist constants C > 0 and r > 1 such that for all pair of graph G = (V,E) and
vector edge activity β ≥ 1, e ∈ E, A,B ⊂ E\{e}, let m = {βe → β′

e}, m1 = {βf → βA
f }f∈A,
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m2 = {βf → βB
f }f∈B where β′

e ≥ 1, βA
f ≥ 1 for f ∈ A, βB

f ≥ 1 for f ∈ B and C1 ≤ β′
e

βe
≤ C2, we

have ∣∣∣Pm1
G,m − Pm2

G,m

∣∣∣ ≤ Cr−dG(e,m1 ̸=m2).

Here, we denote m1 ̸= m2 = (A\B) ∪ (B\A) ∪ {f ∈ A ∩ B : βA
f ̸= βB

f }, the set of edges on which
m1 and m2 differ with each other, and dG(e,m1 ̸= m2) is the shortest distance from any end of e
to any end of edge in m1 ̸= m2.

As a corollary, the ratio that only removes the edge defined as PG,e(β, λ) =
ZG\e(β,λ)

ZG(β,λ) exhibits
SSM.

Corollary 2.3. Fix β ≥ 1 and uniform external filed λ ∈ D for Ising model, then there exist
constants C > 0 and r > 1 such that for all graph G = (V,E), e ∈ E, edge sets A,B ⊂ E\{e}, we
have ∣∣PG\A,e − PG\B,e

∣∣ ≤ CrdG(e,A ̸=B)

where A ̸= B = (A\B) ∪ (B\A), the symmetric difference of A and B, and dG(e,A ̸= B) is the
shortest distance from e to any edge in A ̸= B.

2.2 LDC amd uniform bound implies SSM
The framework that LDC and uniform bound implies SSM was originally introduced in [Reg23].
Here, we adopt the definition of LDC from [SY24]. For two complex functions f(λ) and g(λ) analytic
near 0, we denote by λk | f(λ) − g(λ) the property that their Taylor series f(λ) =

∑∞
i=0 aiλ

i and
g(λ) =

∑∞
i=0 biλ

i near λ = 0 satisfy ai = bi for 0 ≤ i ≤ k − 1. A region is a connected open set in
C, especially, an open disk with an inner point removed is also a region.

Definition 2.4 (LDC). For all pair of graph G = (V,E) and vector edge activity β ≥ 1, e ∈ E,
A,B ⊂ E\{e}, let m = {βe → β′

e}, m1 = {βf → βA
f }f∈A, m2 = {βf → βB

f }f∈B where β′
e ≥ 1,

βA
f ≥ 1 for f ∈ A, βB

f ≥ 1 for f ∈ B and C1 ≤ β′
e

βe
≤ C2, then

λdG(e,m1 ̸=m2)+1 | Pm1
G,m(β, λ)− Pm2

G,m(β, λ)

Similarly, one can define vertex-type LDC for vertex-type ratio function.

Remark 2.5. By Lee–Yang theorem, if β ≥ 1 then the partition function of the Ising model
ZG(β,λ) ̸= 0 for all λ ∈ DV . Thus the ratio Pm1

G,m(β, λ) in definition 2.4 is always analytic on
λ ∈ D. In order to prove the LDC property, we only need to focus on the Taylor series of the ratio
near λ = 0.

Exactly following the proofs in [SY24], we have the following lemma.

Lemma 2.6. Fix 0 < C1 < C2, U ⊂ D is a complex region containing 0 and ∂U ⊂ D. If there
exist a constant C > 0 such that for all pair of graph G = (V,E) and vector edge activity β ≥ 1,
Pm1
G,m(β, λ) ≤ C holds on λ ∈ ∂U and the LDC property holds, then the edge-type ratio function

satisfies edge-type SSM for any z ∈ U .

Similarly, vertex-type LDC and a uniform bound for vertex-type ratio will imply vertex-type
SSM.

In [Reg23], Regts introduce Montel’s theorem to get a uniform bound for a family of analytic
functions. In particular, the following lemma is proved.
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Lemma 2.7. Let U be a complex region and F be a family of holomorphic functions f : U → C
such that f(U) ⊂ C\{0, 1} for all f ∈ F . If there exists z0 ∈ U and C > 0 such that |f(z0)| ≤ C
for all f ∈ F . Then for any compact subset S ⊂ U , there exists a positive constant C1 such that
for all f ∈ F and z ∈ S, we have |f(z)| ≤ C1.

3 Division Relation
Lemma 3.1. Let G = (V,E) be a graph with 2-spin vector value parameters (β,γ,λ), and m1,m2

be vector value mapping of G. Assuming that m1 and m2 only change the value in subgraph G1 and
G2 respectively and G1 ∩ G2 = ∅. If for all v ∈ V the external field λv is dividable by λ and all
changed external field by m1,m2 is also dividable by λ, then

λdG(G1,G2)+1 | ZG(β,γ,λ)Z
m1,m2

G (β,γ,λ)− Zm1
G (β,γ,λ)Zm2

G (β,γ,λ)

where dG(G1, G2) = minu∈G1,v∈G2 dG(u, v).

Proof. For simplicity, we omit (β,γ,λ) in the notation. Let SG = V → {+,−}, then

ZGZ
m1,m2

G − Zm1
G Zm2

G

=
∑
σ∈SG

wG(σ)
∑
σ∈SG

wm1,m2

G (σ)−
∑
σ∈SG

wm1
G (σ)

∑
σ∈SG

wm2
G (σ)

=
∑

(σ1,σ2)∈
(SG×SG)

wG(σ1)w
m1,m2

G (σ2)−
∑

(σ3,σ4)∈
(SG×SG)

wm1
G (σ3)w

m2
G (σ4)

For (σ, τ) ∈ SG×SG, we consider the or operator of spin defined by or(−,−) = −, or(−,+) = +,
or(+,−) = + and or(+,+) = +. The or operator of two configurations is denoted by or(σ, τ) =
{v ∈ G : or(σ(v), τ(v))}.

If there exists a (+) path (all vertices in the path have (+) spin) in or(σ, τ) connecting some
components of G1 and G2 in G, then the path has at least dG(G1, G2) + 1 vertices with spin (+).
Since the external field λ is dividable by λv for all v ∈ V and all changed external field by m1,m2 is
also dividable by λ, the term wG(σ)w

m1,m2

G (τ) and wm1
G (σ)wm2

G (τ) must have a factor λdG(G1,G2)+1.
Thus we only need to consider the terms such that there are no (+) paths connecting some

components of G1 and G2 in or(σ, τ), we call such a pair configurations good. We will show that
the sum of the remaining terms is exactly 0. To do this, we will show that there exists a bijection
f from good pair to good pair, such that for each good pair (σ1, σ2), f(σ1, σ2) = (σ3, σ4) is still a
good pair and wG(σ1)w

m1,m2

G (σ2) = wm1
G (σ3)w

m2
G (σ4).

Let (σ1, σ2) be a good pair, consider the subgraph G′ of G which is induced by {v ∈ V (G\(G1∪
G2))|or(σ1, σ2)(v) = +} ∪ V (G1) ∪ V (G2). By the definition of good pair, there are no (+) paths
connecting some components of G1 and G2 in G′.

Let S be the minimal vertex set containing all connected components of G′ which intersect with
G1, i.e., S =

⋃
A is a connected component of G′,A∩G1 ̸=∅ V (A), and T be V (G)\S (easily to see G1 ⊂ G[S]

and G2 ⊂ G[T ]).
Define function f as follows:

f(σ1, σ2) = (σ2|S(σ1,σ2) ⊕ σ1|T (σ1,σ2), σ1|S(σ1,σ2) ⊕ σ2|T (σ1,σ2))
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where | denotes the restriction of the configuration on the vertex set, ⊕ denotes the union of
two partial configurations. The function f is well-defined since S(σ1, σ2) and T (σ1, σ2) are well
defined by good pair (σ1, σ2).

This mapping f is just exchange and recombine the S part of two configurations. Let (σ3, σ4) =
f(σ1, σ2), it’s easy to see that or(σ1, σ2) = or(σ3, σ4), thus S(σ1, σ2) = S(σ3, σ4). Thus f is a
bijection and its inverse function is itself (swap twice is the original pair).

For each good pair (σ1, σ2) and (σ3, σ4) = f(σ1, σ2). Let S = S(σ1, σ2) = S(σ3, σ4) and
T = T (σ1, σ2) = T (σ3, σ4). Let s(e, σ) be the indicator function whether e ∈ cutG(S, T ) under the
configuration σ is (−,−), where e = (u, v), u ∈ S, v ∈ T . We will show that s(e, σ1) + s(e, σ2) =
s(e, σ3) + s(e, σ4). From the definition of S and T , there are no (+,+) edges between S and
T under the configurations σ′ = or(σ1, σ2) = or(σ3, σ4), thus at least one of σ′(u) and σ′(v)
is (−). W.l.o.g, we assume σ′(u) = (−), then σ1(u) = σ2(u) = σ3(u) = σ4(u) = (−). Thus
s(e, σ1) + s(e, σ2) is the number of (−) spins between σ1(v) and σ2(v) and s(e, σ3) + s(e, σ4) is the
number of (−) spins between σ3(v) and σ4(v). Since σ1(v) = σ3(v) and σ2(v) = σ4(v), we have
s(e, σ1) + s(e, σ2) = s(e, σ3) + s(e, σ4).

Write C = cutG(S, T ), by the definition of w, we have

wG(σ1)w
m1,m2

G (σ2)

=
∏
e∈C

βs(e,σ1)
e wG[S](σ1|S)wG[T ](σ1|T )

∏
e∈C

βs(e,σ2)
e wm1

G[S](σ2|S)w
m2

G[T ](σ2|T )

=
∏
e∈C

βs(e,σ1)+s(e,σ2)
e wm1

G[S](σ2|S)wG[T ](σ1|T )wG[S](σ1|S)wm2

G[T ](σ2|T )

=
∏
e∈C

βs(e,σ3)+s(e,σ4)
e wm1

G[S](σ3|S)wG[T ](σ3|T )wG[S](σ4|S)wm2

G[T ](σ4|T )

=
∏
e∈C

βs(e,σ3)
e wm1

G[S](σ3|S)wG[T ](σ3|T )
∏
e∈C

βs(e,σ4)
e wG[S](σ4|S)wm2

G[T ](σ4|T )

=wm1
G (σ3)w

m2
G (σ4)

Thus the sum of the remaining terms is exactly 0, which is dividable by λdG(G1,G2)+1.

As applications of the above property, we can prove new SSM results for on Ising model in the
following sections, where we see the partition function as a univariate polynomial in λ.

4 Edge-type SSM
4.1 Edge-type LDC
Lemma 4.1. Let G = (V,E) be a graph with edge activities β ≥ 1 and uniform external field
λ ∈ D. Let e ∈ G and A ⊂ E\{e}, m = {βe → β′

e} with β′
e ≥ 1 and m1 = {βe′ → β′

e′ |e′ ∈ A} where
β′
e′ ≥ 1 for all e′ ∈ A. Then the Taylor series of PG,m(β, λ) and Pm1

G,m(β, λ) near λ = 0 satisfy

λdG(e,A)+1 | PG,m(β, λ)− Pm1
G,m(β, λ)
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Proof.

PG,m(β, λ)− Pm1
G,m(β, λ) =

Zm
G (β, λ)

ZG(β, λ)
−

Zm,m1

G (β, λ)

Zm1
G (β, λ)

=
Zm
G (β, λ)Zm1

G (β, λ)− Zm,m1

G (β, λ)ZG(β, λ)

ZG(β, λ)Z
m1
G (β, λ)

.

Clearly 1
ZG(β,λ)Z

m1
G (β,λ)

is analytic near 0. Combining with Lemma 3.1, we have λdG(e,A)+1 |
PG,m(β, λ)− Pm1

G,m(β, λ).

Lemma 4.2. Let G = (V,E) be a graph with edge activities β ≥ 1 and uniform external field
λ ∈ D. Let e ∈ E and A,B ⊂ E\{e}, m = {βe → β′

e} with β′
e ≥ 1 and m1 = {βe′ → βA

e′ |e′ ∈ A} ,
m2 = {βe′ → βB

e′ |e′ ∈ B} where βA
e′ ≥ 1 for all e′ ∈ A and βB

e′ ≥ 1 for all e′ ∈ B. Then the Taylor
series of Pm1

G,m(β, λ) and Pm2
G,m(β, λ) near λ = 0 satisfy

λdG(e,m1 ̸=m2)+1 | Pm1
G,m(β, λ)− Pm2

G,m(β, λ).

Proof. Consider β′ is β changed by m1 ∩m2, m′
1 = m1\m2, m′

2 = m2\m1, then

Pm1
G,m(β, λ)− Pm2

G,m(β, λ) =P
m′

1
G,m(β′, λ)− P

m′
2

G,m(β′, λ)

=[P
m′

1
G,m(β′, λ)− PG,m(β′, λ)] + [PG,m(β′, λ)− P

m′
2

G,m(β′, λ)].

By the previous lemma, we have λdG(e,m′
1)+1 | P

m′
1

G,m(β′, λ) − PG,m(β′, λ) and λdG(e,m′
2)+1 |

PG,m(β′, λ)− P
m′

2
G,m(β′, λ). Since dG(e,m1 ̸= mb) = min{dG(e,m′

1), dG(e,m
′
2)}, we are done.

4.2 Uniform bound of edge type ratio
The celebrated Lee–Yang theorem states that if all vertex is in the unit disk, then the partition
function of ferromagnetic Ising model is zero-free.

Theorem 4.3 (Lee–Yang theorem). Let G = (V,E) be a graph, and β = (βe)e∈E where βe ≥ 1 for
all e ∈ E and λ = (λv)v∈V ∈ D|V | be the external field. Then the partition function of Ising model
ZG(β,λ) ̸= 0.

We are ready to prove the edge type ratio avoid 0 and 1.

Lemma 4.4. Let G = (V,E) be a graph, with edge activities β ≥ 1 and non-uniform external fields
λ ∈ DV , e ∈ E, if β′ ≥ 1 and β′ ̸= βe, then PG,{βe→β′}(β,λ) avoid 0 and 1.

Proof. Since β′ ≥ 1, by Lee–Yang theorem, it is trivial that PG,{βe→β′}(β,λ) ̸= 0. We prove the
ratio avoid 1.
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Let e = (u, v), we have

ZG(β,λ)− Z
{βe→β′}
G (β,λ)

=Z+,+
G,u,v(β,λ) + Z−,−

G,u,v(β,λ) + Z+,−
G,u,v(β,λ) + Z−,+

G,u,v(β,λ)

− β′

βe
Z+,+
G,u,v(β,λ)−

β′

βe
Z−,−
G,u,v(β,λ)− Z+,−

G,u,v(β,λ)− Z−,+
G,u,v(β,λ)

=
βe − β′

βe
(Z+,+

G,u,v(β,λ) + Z−,−
G,u,v(β,λ))

Merge u, v into a single vertex w we get graph G′, set λw = λuλv, if parallel edges exist (i.e.
(u, x) ∈ E, (v, x) ∈ E for some x ∈ V ), we merge them into a single edge and set β(w,x) = β(u,x)β(v,x).
Write the partition function of G′ as ZG′(β′,λ′).

We can see ZG′(β′,λ′) = Z+
G′,w(β

′,λ′) + Z−
G′,w(β

′,λ′) = 1
βe
(Z+,+

G,u,v(β,λ) + Z−,−
G,u,v(β,λ)). Since

λ′ ∈ D|V (G)−1| and β′ ≥ 1, by Lee–Yang theorem, ZG(β,λ)−Z
{βe→β′}
G (β,λ) = (βe−β′)ZG′(β′,λ′) ̸=

0. Thus the ratio avoid 1.

Lemma 4.5 (uniform bound). Fix 0 < C1 ≤ C2 be two constant numbers, S be a compact subset
of D. There exists a constant C > 0 such that for any graph G = (V,E) with any edge activities
β ≥ 1, any e ∈ E, any β′ ≥ 1 with C1 ≤ β′

βe
≤ C2 and any λ ∈ S, we have |PG,{βe→β′}(β, λ)| ≤ C.

Proof. We see the ratios as a family of functions of λ. It’s trivial when β′ = βe, the ratio is exactly
1. So we only consider the family of ratio functions when β′ ̸= βe. By Lemma 4.4, PG,{βe→β′}(β, λ)

avoid 0 and 1 for all λ ∈ D. Since PG,{βe→β′}(β, 0) =
β′

βe
∈ [C1, C2] is bounded, by Lemma 2.7, the

upper bound is got.

Combining Lemmas 2.6, 4.2 and 4.5, we can establish the edge type SSM.

Theorem 2.2 (edge-type SSM). Fix uniform external field λ ∈ D and two constants 0 < C1 < C2

, then there exist constants C > 0 and r > 1 such that for all pair of graph G = (V,E) and
vector edge activity β ≥ 1, e ∈ E, A,B ⊂ E\{e}, let m = {βe → β′

e}, m1 = {βf → βA
f }f∈A,

m2 = {βf → βB
f }f∈B where β′

e ≥ 1, βA
f ≥ 1 for f ∈ A, βB

f ≥ 1 for f ∈ B and C1 ≤ β′
e

βe
≤ C2, we

have ∣∣∣Pm1
G,m − Pm2

G,m

∣∣∣ ≤ Cr−dG(e,m1 ̸=m2).

Here, we denote m1 ̸= m2 = (A\B) ∪ (B\A) ∪ {f ∈ A ∩ B : βA
f ̸= βB

f }, the set of edges on which
m1 and m2 differ with each other, and dG(e,m1 ̸= m2) is the shortest distance from any end of e
to any end of edge in m1 ̸= m2.

5 FPTAS for Ising model
Fix β > 1, ∆ ∈ N+ and λ ∈ D, we can design a new FPTAS for the partition function ZG(β, λ) of
Ising model with uniform external field λ using the above results. Even though this algorithm is
definitely slower than Barvinok’s algorithm.
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Our algorithm is similar to both Weitz’s and Barvinok’s algorithms. In Weitz’s algorithm, we
pin a vertex at each step and compute an approximation of the ratio of the partition function
via SSM, then multiply them to get the approximation of the partition function. In Barvinok’s
algorithm, we compute the first O(log(n)) coefficients of the Taylor series of log(Z) and use the
truncation of the Taylor series to get the approximation of the partition function.

In our algorithm, we delete an edge in each step, and compute the approximation of the ratio
of partition function via computing the first O(log(n)) coefficients of the Taylor series of the ratio
of partition function. Then we multiply them to get the approximation of the partition function.

Lemma 5.1. Fix β > 1, for all graph G and edge e ∈ G, for any compact subset S ⊂ D, there
exists a constant c > 0 such that |PG,e(β, λ)| ≥ c for all λ ∈ S.

Proof. By Lemma 4.4, 1/PG,e(λ) avoid 0 and 1. Since 1/PG,e(0) = 1/β is bounded, by Lemma 2.7,
the upper bound of 1/PG,e(λ) is got. Thus the lower bound of PG,e(λ) is got.

Lemma 5.2 (c.f. Theorem 3.1 in [LSS19b]). Fix ∆ ∈ N+ and constant C > 0. There exist a
deterministic poly(n/ε)-time algorithm that, given any n-vertex graph G of maximum degree ∆ and
any ε ∈ (0, 1), computes the first C log(n/ε) coefficients of the partition function of the Ising model
on G with edge activities β and uniform external field λ.

Lemma 5.3. Let f(λ) = A(λ)
B(λ) , where A(λ), B(λ) are analytic functions near 0 and B(0) ̸= 0. If

we know the first k-th coefficient of the Taylor series of A(λ) and B(λ), then we can calculate the
first k-th coefficient of the Taylor series of f(λ) in time O(k2).

Proof. See Appendix B.

Theorem 5.4 (FPTAS). Fix β > 1, ∆ ∈ N+, λ ∈ D, there exists a FPTAS to compute the
partition function of the Ising model ZG(β, λ).

Proof. Denote n = |V | and m = |E|. Let E(G) = {e1, e2, · · · , em} be the edge set of G and define
Ei = {e1, e2, · · · , ei} for (i = 1, 2, · · · ,m), and set E0 = ∅. Note that

ZG(β, λ)

ZG\E(β, λ)
=

m∏
i=1

ZG\{e1,e2,...,ei−1}(β, λ)

ZG\{e1,e2,...,ei}(β, λ)

=
1∏m

i=1 PG\Ei−1,ei(β, λ)
.

Since ZG\E = (1 + λ)n (isolated vertices), to get a (1 + ε) approximation of ZG, (1 + ε
(1+ε)m)

approximation of PG\Ei−1,ei(β, λ) is enough. By Lemma 5.1, the ratio has a constant lower bound c,
thus cε

(1+ε)m additive error of the ratio is sufficient. By the uniform bound of the ratio in Lemma 4.5,
the first d terms of the Taylor series will give a O(r−d) additive error for some r > 1 (the proof of
Lemma 2.6 exactly shows this). Thus we need to calculate the first O(log(mC(1+ε)

cε )) = O(log(n/ε))
coefficients of the Taylor series of the ratio to get the cε

(1+ε)m additive error. By Lemma 5.2, it can
be done in time poly(n/ε). Then the FPTAS is established.

Remark 5.5. Though the FPTAS is established, we wonder can we get a FPTAS directly from the
new SSM results like Weitz’s algorithm?
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A Vertex-type SSM
A.1 Vertex-type LDC
Lemma A.1. For β ≥ 1, c ∈ [0, 1), G = (V,E) be a graph, v ∈ V , A ⊂ V \{v}, λ ∈ DV with λ | λv

for all v ∈ V , m = {λv → cλv}, m1 = {λu → cλu}u∈A, then

λdG(v,A)+1 | PG,m(β,λ)− Pm1
G,m(β,λ).

Proof.

PG,m(β,λ)− Pm1
G,m(β,λ) =

Zm
G (β,λ)

ZG(β,λ)
−

Zm,m1

G (β,λ)

Zm1
G (β,λ)

=
Zm
G (β,λ)Zm1

G (β,λ)− Zm,m1

G (β,λ)ZG(β,λ)

ZG(β,λ)Z
m1
G (β,λ)

.

Clearly 1
ZG(β,λ)Z

m1
G (β,λ)

is analytic near λ = 0. Combining with Lemma 3.1, we have λdG(v,A)+1 |
PG,m(β,λ)− Pm1

G,m(β,λ).

Lemma A.2. For β > 1, c ∈ [0, 1), G = (V,E) be a graph, v ∈ V , A,B ⊂ V \{v}, m = {λv → cλv},
m1 = {λu → cλu}u∈A, m2 = {λu → cλu}u∈B, then

λdG(v,m1 ̸=m2)+1 | Pm1
G,m(β, λ)− Pm2

G,m(β, λ)

where m1 ̸= m2 is vertex set where m1 and m2 differ.

Proof. Consider λ′ as the uniform external field λV changed by m1 ∩ m2, m′
1 = m1\m2, m′

2 =
m2\m1, then

Pm1
G,m(β, λ)− Pm2

G,m(β, λ) =P
m′

1
G,m(β,λ′)− P

m′
2

G,m(β,λ′)

=[P
m′

1
G,m(β,λ′)− PG,m(β,λ′)] + [PG,m(β,λ′)− P

m′
2

G,m(β,λ′)].

By the previous lemma, we have λdG(v,m′
1)+1 | PG,m′

1
(β,λ′) − PG,m(β,λ′) and λdG(v,m′

2)+1 |
PG,m(β,λ′)− PG,m′

2
(β,λ′). Since dG(v,m1 ̸= m2) = min{dG(v,m′

1), dG(v,m
′
2)}, we are done.

A.2 Uniform bound of vertex type ratio
Lemma A.3 (c.f. Corollary 38 in [SY24]). Let G be a graph and v be a vertex in G. Then the
partition function of Ising model Z+

G,v(β,λ) can be expressed as:

Z+
G,v(β,λ) = λvZG\{v}(β,λ

v+)

where ZG\{v}(β,λ
v+) is the partition function of the Ising model with non-uniform external fields

λv+ on the graph G\{v} obtained from G by deleting v, and λv+
w = λw for w ∈ V \(N(v)∪{v}) and

λv+
w = βλw for w ∈ N(v).

Lemma A.4. Let G = (V,E) be a graph, β > 1 , λ ∈ DV
1
β

, v ∈ V (G), if λ′ ∈ D 1
β

and λ′
v ̸= λv,

then PG,{λv→λ′}(β,λ) avoid 0 and 1.

13



Proof. By Lee–Yang theorem, it is trivial that PG,{λv→λ′}(β,λ) ̸= 0. We prove the ratio avoid 1.

ZG(β,λ)− ZG(β,λ
′)

=Z+
G,v(β,λ) + Z−

G,v(β,λ)− Z+
G,v(β,λ

′)− Z−
G,v(β,λ

′)

=Z+
G,v(β,λ)− Z+

G,v(β,λ
′)

=(λv − λ′
v)ZG\{v}(β,λ

v+) (Lemma A.3)

Since λ ∈ DV
1
β

, then λv+ ∈ DV \{v} , by Lee–Yang theorem, ZG\{v}(β,λ
v+) ̸= 0, thus the ratio

avoid 1.

Lemma A.5. Fix β ≥ 1 and c ∈ [0, 1), then for any compact set S ⊂ D 1
β
\{0}, there exists a

constant C such that for any graph G = (V,E), vertex v ∈ V , A ⊂ V \{v}, m = {λv → cλv},
m1 = {λu → cλu}u∈A, such that |Pm1

G,m(β, λ)| ≤ C for all λ ∈ S.

Proof. By Lemma A.4, Pm1
G,m(β, λ) avoid 0 and 1 for all λ ∈ D 1

β
\{0}. Pick a positive constant

λ′ ∈ (0, 1
β ), then 0 < Pm1

G,m(β, λ′) < 1 always holds. Then by Lemma 2.7, the upper bound is
got.

Combining Lemmas A.2 and A.5 and the framework from LDC and uniform bound to SSM, we
can establish the vertex type SSM.

Theorem A.6 (vertex-type SSM). Fix edge activity β ≥ 1 and uniform external λ ∈ D 1
β

for Ising
model, and c ∈ [0, 1). Then there exist constant C > 0 and r > 1 such that for all graph G = (V,E),
v ∈ V , A,B ⊂ V \{v}, let m = {λv → cλ}, m1 = {λu → cλ}u∈A, m2 = {λu → cλ}u∈B, we have∣∣∣Pm1

G,m − Pm2
G,m

∣∣∣ ≤ Cr−dG(v,m1 ̸=m2).

B Proof of Lemma 5.2
Proof. Let A(z) =

∑∞
i=0 aiz

i, B(z) =
∑∞

i=0 biz
i, f(z) =

∑∞
i=0 ciz

i then

A(z) =
∞∑
i=0

aiz
i = B(z)f(z) =

∞∑
i=0

biz
i

∞∑
i=0

ciz
i =

∞∑
i=0

i∑
j=0

bjci−jz
i.

Thus we have ai =
∑i

j=0 bjci−j . Note b0 = B(0) ̸= 0, then ci =
1
b0
(ai −

∑i
j=1 bjci−j). This can

be computed in time O(k2).
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